ВОЛЬФРАМ
Рецензент: к.х.н. В. М. Амосов.

УДК 669.273

Рассматриваются физико-химические основы и практика процессов гидрометаллургической переработки вольфрамовых рудных концентратов, производство важнейших соединений вольфрама (окислов, галогенидов, альфогенидов, карбонил, карбидов), способы получения порошкообразного и компактного вольфрама, а также важнейших сплавов на основе вольфрама.

Большое внимание уделено новым направлениям в гидрометаллургии вольфрама и производстве компактного металла методами порошковой металлургии и плавки. Рассмотрены физические, химические и механические свойства вольфрама и области его применения. Книга содержит обширную библиографию работ советских и зарубежных ученых.

Предназначается для инженерно-технических и научных работников заводов и научно-исследовательских институтов, преподавателей, аспирантов и студентов старших курсов металлургических вузов. Ил. 88. Табл. 35. Список лит.: 744 назв.

ИБ № 430

Абрам Наумович Зеликман
Людмила Самуиловна Никишина

ВОЛЬФРАМ

Редактор издательства В. П. Молокова
Художественный редактор Г. А. Жегин
Технический редактор Э. А. Кулагова
Корректоры: Л. Ф. Дуровская, И. А. Король
Переплет художника Е. Н. Волкова

Сдано в набор 12/V 1977 г., Подписано в печать 12/XII 1977 г. Т-20598,
Формат бумаги 60х90/16. Бумага типографская № 2,
Печ. л. 17. Уч.-изд. л. 20,56. Тираж 2100 экз. Заказ 214.
Изд. № 2459. Цена 3 р. 40 к.

Издательство «Металлургия», 119034, Москва, Г-34,
2-й Объездный пер., д. 14

Ленинградская типография № 6 Союзполиграфпрома
при Государственном комитете Совета Министров СССР
по делам издательства, полиграфии и книжной торговли
193144, Ленинград, С-144, ул. Моисеенко, 10

© Издательство «Металлургия», 1978
31008—035
040 (01)—78 72—78
ОГЛАВЛЕНИЕ

Предисловие .. 5

ГЛАВА I
МИНЕРАЛЫ ВОЛЬФРАМА, РУДЫ И ИХ ОБОГАЩЕНИЕ 6
1. Краткие сведения из истории 6
2. Минералы вольфрама .. 7
3. Геохимия, месторождения и руды вольфрама 8
4. Обогащение вольфрамовых руд, рудные концентраты 11

ГЛАВА II
СВОЙСТВА И ОБЛАСТИ ПРИМЕНЕНИЯ ВОЛЬФРАМА 17
1. Физические свойства .. 17
2. Химические свойства ... 21
3. Области применения вольфрама 25

ГЛАВА III
ПРОИЗВОДСТВО ТРЕХОКСИСИ ВОЛЬФРАМА 32
1. Способы переработки вольфрамовых концентратов 32
2. Высокотемпературные способы разложения вольфрамовых концентратов с получением вольфрамата натрия 33
3. Гидрометаллургические способы вскрытия вольфрамовых концентратов ... 39
4. Характеристика соединений вольфрама, выделяемых из вольфраматных растворов ... 50
5. Схемы переработки растворов вольфрамата натрия 53
6. Кислотные способы вскрытия шламовых концентратов 69
7. Очистка вольфрамовой кислоты 80
8. Получение трехоксида вольфрама и контроль качества продукции ... 83
9. Переработка вторичного вольфрамового сырья 84

ГЛАВА IV
ХЛОРИДЫ И ФТОРИДЫ ВОЛЬФРАМА 90
1. Гексахлорид вольфрама .. 90
2. Ниацин хлорид вольфрама 97
3. Окситетрахлорид вольфрама 99
4. Хлорирование окислов и минералов вольфрама 101
5. Фториды и оксифториды вольфрама 109

ГЛАВА V
ВОССТАНОВЛЕНИЕ ВОЛЬФРАМА РАЗЛИЧНЫХ СОЕДИНЕНИЙ 114
1. Окислы вольфрама ... 114
2. Термодинамика, восстановления трехокиси вольфрама водородом ... 126
3. Кинетика и механизм восстановления WO₃ водородом ... 129
4. Факторы, определяющие размеры частиц вольфрамовых порошков, получаемых восстановлением WO₃ водородом ... 137
5. Практика восстановления трехокиси вольфрама водородом 144
6. Гранулометрический и химический составы вольфрамовых порошков 148
7. Восстановление вольфрама из трехокиси вольфрама и вольфрамата кальция углеродом 152
8. Получение порошков вольфрама и вольфрамовых покрытий из галогенидов 155
9. Получение вольфрама из гексакарбонила ... 169
10. Получение вольфрама электролизом ... 173

ГЛАВА VI
ПРОИЗВОДСТВО КОМПАКТНОГО ВОЛЬФРАМА ... 177
1. Введение ... 177
2. Производство вольфрамовых штабиков ... 180
3. Новые методы формования и спекания заготовок и изделий 189
4. Плавка вольфрама .. 197
5. Получение монокристаллов вольфрама ... 201

ГЛАВА VII
ОБРАБОТКА ДАВЛЕНИЕМ И МЕХАНИЧЕСКИЕ СВОЙСТВА ВОЛЬФРАМА 208
1. Обработка давлением .. 208
2. Непровисающая вольфрамовая проволока .. 216
3. Механические свойства вольфрама .. 221

ГЛАВА VIII
СПЛАВЫ НА ОСНОВЕ ВОЛЬФРАМА И КАРБИДА ВОЛЬФРАМА .. 224
1. Жаропрочные сплавы .. 224
2. Композиционные псевдосплавы и сплавы высокой плотности (тяжелые сплавы) 232
3. Карбиды вольфрама и твердые сплавы .. 235

Список литературы .. 251
ПРЕДИСЛОВИЕ

Роль в современной технике вольфрама — самого тугоплавкого металла — весьма велика. Производство электронных и электроосветительных приборов, легированных сталей, жаропрочных сплавов для новых областей техники, износостойких и инструментальных твердых сплавов — далеко не полный перечень областей его использования.

За последнее десятилетие в связи с расширением областей применения и массовыми производства вольфрама, его сплавов и соединений, повышением требований к качеству изделий из этого металла выполнены новые исследования научного и технологического плана.

Авторы данной монографии поставили перед собой задачу — осветить современное состояние различных сторон технологии вольфрама: производства важнейших химических соединений из рудного сырья и полуфабрикатов, различных процессов восстановления вольфрама из его соединений, получения компактного металла методами порошковой металлургии и плавки, а также важнейших сплавов на основе вольфрама.

Ранее, в 1958 г., была издана в СССР известная монография К. Смителлса «Вольфрам» (перевод с английского издания 1952 г.) и книга К. Агге и И. Вацека «Вольфрам и молибден» (перевод с чешского издания 1954 г.). Эти книги, естественно, не отражают новых направлений технологии. Кроме того, в них преимущественно рассматриваются свойства, области применения, порошковая металлургия, вопросы обработки металлов давлением и в значительно меньшей степени процессы получения соединений вольфрама и восстановления из них металла.

Рассмотрение этих вопросов представляет основное содержание данной книги. При этом значительное внимание уделено физико-химическим основам процессов и новым технологическим направлениям. Главы I, IV—VIII написаны А. Н. Зеликманом, главы II, III и § 10 главы V — А. Н. Зеликманом совместно с Л. С. Никитиной.

Авторы выражают глубокую благодарность канд. хим. наук В. М. Амосову за ценные критические замечания, учтенные при подготовке рукописи к печати.
Глава I
Минералы вольфрама, руды и их обогащение

1. Краткие сведения из истории

В 1781 г. шведский химик К. В. Шееле, разлагая кислотой минерал тунгстен (впоследствии названный шеелитом), выделил кислоту нового элемента. Два года спустя, в 1783 г., было установлено, что новый элемент входит в состав другого минерала — вольфрамита, который часто встречался в оловянных рудах. В том же году испанцы, братья Эльгуйяр, впервые получили металллический порошок вольфрама, восстанавливающая трешинки вольфрама углеродом.

На урале вольфрамовые минералы были известны под названием «волчец», а термин «волчечная кислота» встречается в русских документах 1824 г. За элементом до настоящего времени сохранялось два названия: вольфрам (в Германии, СССР и ряде стран Европы) и тунгстен (в Англии, США, Франции). В 50-х годах прошлого века было открыто влияние вольфрама на свойства сталей. Однако начало производства и широкого применения вольфрамовых сталей относится к концу 20-го и началу 30-х в. В России вольфрамовая сталь была выплавлена в 1896 г. на Путиловском заводе, исследование ее механических свойств было описано В. Липиным.

Интенсивное развитие вольфрамодобывающей промышленности связано с изобретением быстрорежущей стали, впервые демонстрировавшейся в 1900 г. на всемирной выставке в Париже. Появление этой стали знаменовало большой технический прогресс в области обработки металлов резанием. Вольфрам становится важнейшим легирующим элементом.

Использование вольфрама в электросветильных лампах впервые было предложено русским изобретателем А. Н. Ладыгиным в 1900 г. Однако массовое применение вольфрама в электросветильной, а затем в электровакуумной технике стало возможным после разработки в 1909 г. Кулиджем промышленной технологии производства ковкого металла, основанной на использовании метода порошковой металлургии.

Важным этапом в истории вольфрама явилось создание (1927—1928 гг.) спеченных твердых сплавов, основным компонентом которых служит карбид вольфрама. Эти сплавы, превосходящие по свойствам лучшие инструментальные стали, широко используются в современной технике. Разработка вольфрамовых месторождений в России была начата в годы первой мировой войны, однако добыча была в то время незначительной. Развитие добычи и переработки вольфрамовых руд, освоение производства металла и его сплавов относятся к годам первого пятилетнего плана развития народного хозяйства СССР; в 1927 г. было освоено производство ковкого вольфрама, в 1929 г. — твердых сплавов, 1931 г. — ферровольфрама.

2. МИНЕРАЛЫ ВОЛЬФРАМА

Вольфрам принадлежит к малораспространенным элементам, средневесовое содержание его в земной коре составляет 1·10⁻⁴%.

В самородном состоянии вольфрам не встречается. Большинство минералов (известно около 15 видов) представляют собой соли вольфрамовой кислоты — вольфраматы, исключение составляет весьма редкий минерал тунгстенит WS₂.

Найболее важные минералы, определяющие два типа промышленно используемых руд, — минералы группы вольфраматов железа и марганца (гюбнерит, вольфрамит, ферберит) и вольфрамата кальция — шеелит.

Вольфрамит (Fe, Mn) WO₄ — представляет собой изоморфную смесь вольфраматов железа и марганца, образующих непрерывный ряд твердых растворов. Крайние члены этого ряда ферберит FeWO₄ и гюбнерит MnWO₄ редко встречаются в чистом виде. В практике название ферберит применяют к минералям, в которых отношение FeWO₄ : MnWO₄ > 80 : 20, a название «гюбнерит» к смеси с отношением FeWO₄ : MnWO₄ < 20 : 80. Смеси, состав которых лежит между этими пределами, называют вольфрамитами. Минералы группы вольфрамита кристаллизуются в моно克莱ной сингонии (пространственная группа C₄ᵥ—P₂₁/c). В структуре вольфрамита октаэдры WO₆ сопрягаются по двум непараллельным ребрам, образуя зигзагообразные цепочки. Между ними находятся аналогичные цепочки октаэдров, заполненных атомами Fe или Mn (рис. 1) [1, 2]. В изоморфном ряду FeWO₄—MnWO₄ параметры решетки a₀, b₀ и c₀ закономерно возрастают. Это позволяет ориентировочно определять содержание железа и марганца в минерале по величине одного из параметров (предпочтительно по a₀) [3]. С повышением содержания MnWO₄ параметр решетки a₀ изменяется от 4,741 до 4,829 Å, параметр b₀ — от 5,70 до 5,758 Å и c₀ — от 4,956 до 4,991 Å. Минералы окрашены в черный, коричневый или красновато-коричневый цвет. Плотность колеблется (в зависимости от состава) от 6,9 до 7,8 г/см³, твердость по Моосу 5,0—5,5, микротвердость 300—465 кгс/мм² [3]. Вольфрамиты слабомагнитны, магнитная восприимчивость (43,5—48,0)·10⁻⁶ CGSM. СодержаниеWO₃ в минералах группы вольфрамита колеблется от 76,3 до 76,6%. В них часто содержатся примеси тантала и ниобия в количествах до 1,5—2% суммы (Nb, Ta)₂O₅, примеси скандия и некоторых других элементов [3].

Шеелит — CaWO₄. Кристаллизуется в тетрагональной сингонии, пространственная группа C₄ᵥh—I₄₁/a. Катионы вольфрама расположены в центрах тетраэдров, в вершинах которых находятся ионы кислорода. Катионы кальция находятся в центре многоугранныков с координационным числом 8 (рис. 2). Параметры решетки: a₀ = 5,250 Å, c₀ = 11,37 Å, β = 90°, в элементарной ячейке четыре молекулы. Большей частью шеелит окрашен в жел-
тый, серый или буний цвет. Встречаются бесцветные разновидности. Блеск алмазный, жирноватый, плотность 5,8—6,2 г/см³, твердость по Моосу 4, 5. Шеелит иногда содержит в виде изоморфной примеси повеллит (CaMoO₄). Содержание молибдена в шеелитах некоторых месторождений достигает 10%.

Рис. 1. Структура вольфрамита. Черным выделены цепочки октаэдров, трансляционные вдоль оси a

Рис. 2. Структура шеелита

При облучении ультрафиолетовыми лучами шеелит флуоресцирует сине-голубым светом, что используется для обнаружения его в забоях. Однако при содержании молибдена выше 1% синяя флуоресценция исчезает. Шеелит немагнитен. К другим минералам вольфрама, не имеющим промышленного значения, относятся: тунгсгтит или вольфрамовая охра WO₃·H₂O; купротунгсит CuWO₄·H₂O, штольцит PbWO₄; чиллагит Pb(Mo, W)O₄; ферритунгсит Fe₂WO₄(OH)₄·4H₂O; тунгстенит WS₂.

3. ГЕОХИМИЯ, МЕСТОРОЖДЕНИЯ И РУДЫ ВОЛЬФРАМА

Собственно магматические месторождения вольфрама неизвестны. Все рудные месторождения связаны с пневматолитическими и гидротермальными процессами. В какой форме вольфрам нахо-
дится в постмагматических рудоносных растворах, еще недостаточно установлено.

По данным работы [4], наиболее вероятными формами миграции вольфрама в гидротермальных условиях являются растворенная недиссоциированная вольфрамовая кислота и гидровольфрамат-ион (HWO₄⁻).

Для месторождений, в которых процесс рудообразования проходит с участием F⁻-ионов, возможен перенос вольфрама в форме оксофторовольфраматов щелочных металлов, содержащих анионы WO₃F₅⁻ и WO₃F₃⁻. Для низкотемпературных месторождений (до 200°C) некоторые авторы допускают возможность переноса вольфрама в слабокислых растворах в форме гетерополисоединений, в частности кремниевольфрамовой кислоты H₄[Si(W₃O₁₀)₄]. При нейтрализации рудоносного раствора выделяются вольфраматы: FeWO₄ (при pН ≈ 5,9), MnWO₄ (при pН ≈ 6,7) и CaWO₄ (при pН ≈ 7,3) [5].

Месторождения вольфрама подразделяют на следующие основные группы: контактово-метасоматические (скарновые), грейзеновые, жильные гидротермальные и россыпные [5—7].

Контактово-метасоматические (скарновые) месторождения относятся к крупнейшим и имеют важное промышленное значение. Они приурочены преимущественно к зонам контактов гранитондов повышенной основности с карбонатными толщами. Главные минералы известковых скarnов — пироксены и гранаты. Вольфрам представлен в скарновых месторождениях единственным эндогенным минералом — шеелитом (иногда молибдощеелитом Ca (W, Mo) O₄). В рудах этого типа часто присутствуют кальцит, доломит, флюорит, апатит, барит. Шеелиту иногда сопутствует молибденит, а также другие сульфиды: пирит, халькопирит, галенит и сфалерит.

К месторождениям скарнового типа относятся Тырын-Ауз (Северный Кавказ, СССР), Кинг-Айленд (Австралия), Санданг (Южная Корея), Азегур (Северная Африка), Улу-Даг (Турция), Пайн-Крик США.

Грейзеновые месторождения имеют широкое распространение и отличаются крупными запасами. В месторождениях этого типа грейзенизированные граниты (или гранит-порфiry) содержат мелкую вкрапленность вольфрамита, иногда кварцвольфрамитовые прожилки, образующие штокверк. Основной минерал вольфрама в грейзеновых месторождениях — вольфрамат, шеелит встречается редко. Обычный спутник — касситерит (оловянно-вольфрамовые месторождения). В незначительных количествах встречаются висмутин, молибденит, берилл, сульфиды железа, свинца, цинка.

1 Грейзенизация — среднотемпературный процесс изменения гранитных пород под действием газов и растворов, отделяющихся от охлаждающихся гранитных тел. В результате образуется преимущественно по периферии рудных тел горная порода — грейзен, состоящая в основном из кварца и светлых слюд — лепидолита и мусковита.
Из месторождений в СССР к данному типу относятся Акчатау (Казахстан), Спокойнинское (Восточное Забайкалье) [6]. Крупнейшие зарубежные месторождения — Тарингтон (Австралия), Сунгей (Малайзия) и др. [8].

Жильные гидротермальные месторождения занимают главенствующее положение в мировой добыче вольфрама. Руды залегают в виде кварцевых жил различной мощности и протяженности в интрузивных и осадочно-метаморфических породах.

Наибольшее промышленное значение имеют кварц-касситерит-вольфрамитовые и кварц-вольфрамитовые месторождения. Подчиненное значение имеют кварц-золото-шелелитовые и кварц-антимонит-шелелитовые рудные жилы, содержащие ферберит, антимонит, киноварь и барит.

К месторождениям этого типа в СССР относится Ильяя (Чукотский национальный округ), Антоновское (Восточное Забайкалье), Бом-Горхон (Западное Забайкалье), Бугулы (Казахстан), Джидинское (Бурятская СССР) и др. [6]. Крупнейшие зарубежные месторождения находятся в ряде районов Австралии, Бирмы, Индии, Таиланда, Малайзии, Бразилии (месторождение Иньянхария), США (Боульдер), Канады и других стран [8].

Россыпные месторождения вольфрама образованы в результате размыва коренных пород. Широко распространены делювиальные и аллювиальные россыпи, содержащие вольфрамит и шеелит. Россыпи бедней по содержанию вольфрама, чем жильные месторождения, и в настоящее время их промышленное значение невелико. Содержание WO₃ в песках разрабатываемых россыпей колеблется от одного до нескольких килограммов на 1 м³ песков.

Наиболее крупные россыпные месторождения вольфрама расположены в Юго-Восточной Азии: в КНР, Малайзии и Индонезии, где вольфрамит встречается часто с касситеритом, иногда с колумбитом.

Минимальное содержание WO₃ в рудах, при которых рентабельна их эксплуатация, по данным на 1975 г., составляет 0,14—0,15% (для крупных месторождений) и 0,4—0,5% для мелких месторождений. В эксплуатируемых крупных месторождениях содержание WO₃ в рудах колеблется примерно от 0,2—0,3 до 2%.

Наиболее важные промышленные месторождения вольфрама образуют огромное прерывистое кольцо вдоль западного и восточного побережья Тихого океана. Сюда входят месторождения Дальнего Востока СССР, Кореи, Японии, Южных районов КНР, Бирмы, Таиланда, Вьетнама, Малайи, Австралии, Новой Зеландии, Аляски, Канады, США, Мексики, Перу, Боливии и Аргентины. Меньшее количество месторождений находится в полосе, протянувшейся в широтном направлении вдоль северного побережья Средиземного моря, — от Пиренейского полуострова через Апеннинский полуостров, Турцию, Южную часть СССР (Кавказ, Средняя Азия, Казахстан), КНР и примыкающей на востоке к тихоокеанскому кольцу [8].
4. ОБОГАЩЕНИЕ ВОЛЬФРАМОВЫХ РУД. РУДНЫЕ КОНЦЕНТРАТЫ

Вольфрамовые руды обогащают, получая стандартные концентраты, содержащие 55—65% WO₃. Поскольку руды обычно содержат от 0,2 до 2% WO₃, степень обогащения составляет от 30 до 120. Высокая степень концентрирования достигается применением ряда методов: гравитационного обогащения, флотации, магнитной и электростатической сепарации, химического обогащения.

Обстоятельный обзор методов и схем обогащения вольфрамовых руд содержится в монографии М. А. Фишмана и Д. С. Соболева [91]. Схемы обогащения руд обычно включают следующие операции: сортировку; дробление (крупное и среднее); предварительное обогащение в тяжелых суспензиях; отсадку крупновкрапленной рудной фракции и выделение хвостов; обогащение на винтовых сепараторах; измельчение в стержневых или шаровых мельницах и классификацию: концентрацию на столах и шлюзах или флотацию; доизмельчение промежуточных продуктов; доводку черновых концентратов флотогравитацией, электромагнитной и электростатической сепарацией; доводку методами химического обогащения.

Сортировка руды после крупного дробления проводится на движущихся плоских транспортных лентах после предварительной промывки рудных кусков. Свойство шеелита флуоресцировать голубым светом при облучении ультрафиолетовыми лучами иногда используется для сортировки шеелитовой руды, производимой в этом случае в темном помещении. Для этой цели применяются специальные лампы. Схемы обогащения (число и сочетание операций) зависит от минералогического состава руд, размера вкрапленности минералов вольфрама, комплексыности руды.

Гравитационные методы являются основными при обогащении вольфрамитовых руд. По плотности минералы, встречающиеся в вольфрамовых рудах, можно расположить в следующий ряд, г/см³: вольфрамит (7,1—7,5), касситерит (7,0), арсеноциррит (6,0); шеелит (5,8—6,1), пирит (5,0), молибденит (4,8), пирротин (4,6), барит (4,5), халькопирит (4,2), сфалерит (4,0), сидерит (3,9), гранат (3,5—4,2), флюорит (3,1), слюды (2,8—3,1), полевые шпаты (2,54—2,8), кальцит и кварц (2,5—2,8).

Высокая плотность вольфрамита обеспечивает возможность его отделения гравитационными методами от ряда минералов, имеющих плотность ниже 3,5—4 (кварц, карбонаты, полевые шпаты и др.). В последние годы для предварительного гравитационного обогащения крупновкрапленных вольфрамитовых руд стали применять обогащение в тяжелых суспензиях, используя в качестве суспензионада сферический (гранулированный) порошок ферросилиция. Полученный грубы концентрат после измельче-
ния поступает на дальнейшее обогащение гравитационными методами (на столах, шлюзах).

Гравитационные методы не обеспечивают отделения вольфрамита от касситерита и большинства сульфидов, обладающих высокой плотностью. Отделение вольфрамита от касситерита осуществляется магнитной сепрацией (вольфрамит слабомагнитен, касситерит немагнитен). Магнитную сепрацию используют также для отделения от вольфрамита магнитных минералов (магнетита, пирротина). Магнитной сепрацией иногда предшествует обжиг с целью перевода пиrita в магнетит, отделяемый затем магнитной сепрацией. Если касситерит покрыт пленками окислов железа, отделение касситерита от вольфрамита магнитной сепрацией затрудняется. В этом случае применяют предварительную обработку вольфрамито-касситеритового концентратов горячими растворами серной кислоты для растворения окислов железа.

Для отделения сульфидных минералов от вольфрамита используют флотацию или флотогравитацию (флотация на концентрационных станах) в кислой среде, используя в качестве реагентов ксантогенат и керосин. Для доведения до кондиционных содержаний по примеси мышьяка применяют обжиг вольфрамитового концентрата при 800°С.

При обогащении шеелитовых руд используются гравитационно-флотационные или чисто флотационные схемы. Последние наиболее широко распространены в СССР.

Шеелит хорошо флотируется в щелочной среде (pH = 10–11) при использовании в качестве собирателя олеиновой кислоты, олеата натрия или некоторых заменителей. Заменителем служит, например, реагент ИМ-21 (смесь линолевых и линоленовых кислот), разработанный в институте Механобр [10], и ряд других [9].

Флотация шеелита осложняется в присутствии других легко флотируемых минералов пустой породы — кальцита, доломита, флюорита, талька, барита, апатита. Эффективным депрессором этих минералов служит жидкое стекло, причем депрессирующее действие усиливается при температуре 70–80°С. Добавки серно-кислых солей меди и железа к жидкому стеклу способствуют депрессии кальцита, флюорита и апатита.

Регулятором среды обычно служит сода, в качестве вспенивателей применяют сосновое масло, терпинеоль, технический крезол и др. При флотации шеелитовых руд первоначально флотируют сульфиды в содовой среде ксантоценатом или нейтральными маслами (если руды содержат молибденит) в присутствии пенообразователя. Затем в пульпу вводят жидкое стекло и после некоторого времени перемешивания флотируют шеелит олеатом натрия или другими собирателями. После перечистки грубого концентрата пульпу сгущают (для удаления избытка реагента), пропаривают при 70–80°С в растворе жидкого стекла, разбавляют холодной водой и проводят флотационную перечистку.
<table>
<thead>
<tr>
<th>Марка концентрата</th>
<th>Наименование концентратов</th>
<th>Область преимущественного применения</th>
<th>Содержание WO₃ не менее, %</th>
<th>Содержание примесей, не более, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MnO</td>
<td>SiO₂</td>
</tr>
<tr>
<td>КВГ-1</td>
<td>Вольфрамито-титанитовый первый сорта</td>
<td>Производство ферровольфрама и твердых сплавов</td>
<td>65</td>
<td>18.0</td>
</tr>
<tr>
<td>КВГ-2</td>
<td>То же, второго сорта</td>
<td>Производство ферровольфрама</td>
<td>60</td>
<td>15.0</td>
</tr>
<tr>
<td>КШШ</td>
<td>Шеелитовый искусственный</td>
<td>То же</td>
<td>65</td>
<td>1.0</td>
</tr>
<tr>
<td>КШШ</td>
<td>Шеелитовый</td>
<td>»</td>
<td>60</td>
<td>2.0</td>
</tr>
<tr>
<td>КМШ-1</td>
<td>Молибденово-шеелитовый первого сорта</td>
<td>»</td>
<td>65</td>
<td>0.1</td>
</tr>
<tr>
<td>КМШ-2</td>
<td>Молибденово-шеелитовый второго сорта</td>
<td>Производство ферровольфрама</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>КМШ-3</td>
<td>Молибденово-шеелитовый третьего сорта</td>
<td>То же</td>
<td>55</td>
<td>4.0</td>
</tr>
<tr>
<td>КВГ (т)</td>
<td>Вольфрамито-губернитовый (твердосплавный)</td>
<td>Производство ферровольфрама и твердых сплавов</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>КВГ (к)</td>
<td>Вольфрамито-губернитовый (кислотный)</td>
<td>Производство вольфрамовой кислоты</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>КШ (т)</td>
<td>Шеелитовый (твердосплавный)</td>
<td>Производство ферровольфрама и твердых сплавов</td>
<td>55</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Приложение. Содержание CaO не нормируется, за исключением концентратов марок КВГ (т) и КВГ (к), в которых допускается содержание CaO не более 2,5 и 2% соответственно.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Америка</td>
<td>7 204</td>
<td>6 138</td>
<td>6 724</td>
<td>7 715</td>
<td>18.8</td>
<td>30.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Канада</td>
<td>2 815</td>
<td>3 744</td>
<td>3 556</td>
<td>2 646</td>
<td>11.9</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Аргентина</td>
<td>496</td>
<td>291</td>
<td>300</td>
<td>300</td>
<td>4.9</td>
<td>7.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Боливия</td>
<td>1 821</td>
<td>3 874</td>
<td>3 989</td>
<td>4 587</td>
<td>2.00</td>
<td>0.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Бразилия</td>
<td>423</td>
<td>2 396</td>
<td>2 396</td>
<td>2 089</td>
<td>0.8</td>
<td>5.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Мексика</td>
<td>1 605</td>
<td>1 683</td>
<td>1 683</td>
<td>1 683</td>
<td>1.63</td>
<td>5.0</td>
<td>1.63</td>
</tr>
<tr>
<td>Перу</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Гватемала</td>
<td>796</td>
<td>1 683</td>
<td>1 683</td>
<td>1 683</td>
<td>1.63</td>
<td>5.0</td>
<td>1.63</td>
</tr>
<tr>
<td>Европа</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Австрия</td>
<td>179</td>
<td>856</td>
<td>958</td>
<td>855</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>Испания</td>
<td>3 153</td>
<td>3 098</td>
<td>3 098</td>
<td>3 098</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>Португалия</td>
<td>1 476</td>
<td>1 246</td>
<td>1 246</td>
<td>1 246</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>Франция</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Швеция</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Контinent, страна</td>
<td>Производство концентратов, т по годам</td>
<td>Удельный вес в общем производстве, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Азия</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бирма</td>
<td>333</td>
<td>463</td>
<td>8 802</td>
<td>861</td>
<td>790</td>
<td>515</td>
<td>1,4</td>
</tr>
<tr>
<td>Индия</td>
<td>8</td>
<td>38</td>
<td>40</td>
<td>37</td>
<td>27</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Таиланд</td>
<td>554</td>
<td>1 776</td>
<td>5 264</td>
<td>8 403</td>
<td>5 048</td>
<td>4 275</td>
<td>2,3</td>
</tr>
<tr>
<td>Малайзия</td>
<td>10</td>
<td>132</td>
<td>15</td>
<td>9</td>
<td>242</td>
<td>241</td>
<td>—</td>
</tr>
<tr>
<td>Ю. Корея</td>
<td>4 475</td>
<td>4 337</td>
<td>4 323</td>
<td>4 265</td>
<td>4 730</td>
<td>4 753</td>
<td>18,6</td>
</tr>
<tr>
<td>Япония</td>
<td>722</td>
<td>1 792</td>
<td>2 221</td>
<td>2 317</td>
<td>1 510</td>
<td>1 398</td>
<td>3,0</td>
</tr>
<tr>
<td>Африка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Республика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Заир</td>
<td>213</td>
<td>396</td>
<td>675</td>
<td>532</td>
<td>443</td>
<td>323</td>
<td>0,9</td>
</tr>
<tr>
<td>Руанда</td>
<td>275</td>
<td>381</td>
<td>419</td>
<td>543</td>
<td>500</td>
<td>500</td>
<td>1,1</td>
</tr>
<tr>
<td>Танзания</td>
<td>—</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Уганда</td>
<td>46</td>
<td>254</td>
<td>231</td>
<td>230</td>
<td>240</td>
<td>240</td>
<td>0,2</td>
</tr>
<tr>
<td>ЮАР</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Намибия</td>
<td>170</td>
<td>132</td>
<td>199</td>
<td>150</td>
<td>120</td>
<td>230</td>
<td>0,7</td>
</tr>
<tr>
<td>Южная Родезия</td>
<td>14</td>
<td>214</td>
<td>491</td>
<td>314</td>
<td>300</td>
<td>300</td>
<td>—</td>
</tr>
<tr>
<td>Австралия</td>
<td>1 990</td>
<td>2 780</td>
<td>2 745</td>
<td>300</td>
<td>2 473</td>
<td>2 671</td>
<td>8,3</td>
</tr>
<tr>
<td>Итого**</td>
<td>24 020</td>
<td>37 149</td>
<td>41 777</td>
<td>45 708</td>
<td>41 702</td>
<td>41 177</td>
<td>100,0</td>
</tr>
</tbody>
</table>

* Оценка.
** Итог по перечисленным странам.
Шеелитовые концентраты доводят до установленных кондиций по примесям различными методами химической обработки. Так, для снижения содержания фосфора концентраты обрабатывают на холоду соляной кислотой. При этом одновременно частично удаляются кальцит и доломит. Для очистки от меди, мышьяка и висмута применяют обжиг с последующей обработкой кислотами и другие методы.

Извлечение вольфрама в кондиционные концентраты при обогащении руд различного типа колеблется от 65—70 до 85—90%.

В ряде случаев при обогащении сложных по составу или труднообогатимых руд экономически выгодно выводить из цикла обогащения промпродукты (содержание WO₃ 10—20%) на химическую (гидрометаллургическую) переработку, в результате которой получают искусственный шеелит. Подобные комбинированные схемы обеспечивают высокое извлечение вольфрама из труднообогатимых руд.

При обогащении руд, содержащих молибдосшееелит Ca(W, Mo)O₄, получают флотационные концентраты с высоким содержанием молибдена. Так, концентраты из рудámaraузского месторождения содержат 45—50% WO₃ и 4—5% Mo. Их направляют на гидрометаллургическую переработку для получения молибденового и вольфрамового химических концентратов.

В табл. 1 приведены составы кондиционных концентратов, выпускаемых в СССР. Данные о составе зарубежных концентратов содержатся в публикациях [9,11—15].

Для вольфрамовых промпродуктов в СССР приняты следующие технические условия: от 20% WO₃ и выше (первый сорт) и от 12 до 19,9% (второй сорт).

Производство вольфрамовых концентратов (в пересчете на концентраты с содержанием 60% WO₃) в капиталистических и развивающихся странах возросло с 24020 т в год в 1965 г. до 41177 т в год в 1974 г. (табл. 2). Наиболее крупные производители вольфрамовых концентратов: США, Боливия, Южная Корея, Португалия, Канада, Таиланд, Австралия [16, 17]. По данным [18], в капиталистических, развивающихся странах и КНР в 1974 г. добыто 39780 т вольфрама (по содержанию в концентрах). Из них 17600 т добыто в КНР.
Глава II

СВОЙСТВА
И ОБЛАСТИ ПРИМЕНЕНИЯ
ВОЛЬФРАМА

1. ФИЗИЧЕСКИЕ СВОЙСТВА

Атомные свойства

Атомный номер 74, атомная масса 183,85.
Изотопный состав вольфрама приведен ниже [1]:

Атомная масса изотопа 180 182 183 184 186
Относительное содержание изотопа в при-
родном вольфраме, % 0,135 26,41 14,4 30,64 28,41

Кроме того, известны семь искусственных радиоактивных изо-
топов. В качестве радиоактивных индикаторов используются [1]:
181W ($T_{1/2} = 145$ дней), 183W ($T_{1/2} = 74,5$ дней) и 187W ($T_{1/2} =
= 23,85$ ч).

Конфигурация внешних электронов атома вольфрама $5d^{4}6s^{2}$.
Поперечное сечение захвата тепловых нейтронов 19,2 барн.

Потенциалы ионизации (еВ): $W^{0} \rightarrow W^{+} \rightarrow W^{2+} \rightarrow W^{3+} \rightarrow
\rightarrow W^{4+} \rightarrow W^{5+} \rightarrow W^{6+}$ равны соответственно: 7,98; 17,7; (24);
(35); (48); (61) * [3].

Электронная эмиссия чистого вольфрама. Среднее значение
работы выхода $\varphi = 4,55$ еВ [2]. Среднее значение константы
Ричардсона $\rho A = 89$ A/(см2·К2). Параметры электронной эмис-
сии существенно зависят от кристаллографического направления
[3]:

<table>
<thead>
<tr>
<th>Индекс грани</th>
<th>φ, еВ</th>
<th>Индекс грани</th>
<th>φ, еВ</th>
<th>Индекс грани</th>
<th>φ, еВ</th>
<th>Индекс грани</th>
<th>φ, еВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>4,56</td>
<td>021</td>
<td>4,2</td>
<td>012</td>
<td>4,34</td>
<td>110</td>
<td>5,35</td>
</tr>
<tr>
<td>010</td>
<td>4,47</td>
<td>023</td>
<td>4,58</td>
<td>013</td>
<td>4,35</td>
<td>111</td>
<td>4,40</td>
</tr>
<tr>
<td>011</td>
<td>5,79</td>
<td>100</td>
<td>4,60</td>
<td>016</td>
<td>4,43</td>
<td>112</td>
<td>4,80</td>
</tr>
</tbody>
</table>

Подобная зависимость отчетливо выявляется при получении
текстурированных слоев вольфрама с различной ориентацией
кристаллов, осажденных из газовой фазы [54].

Ниже приведены данные о величине электронной эмиссии чи-
стого вольфрама в зависимости от температуры [4]:

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Эмиссия, мА/см2</th>
</tr>
</thead>
<tbody>
<tr>
<td>830</td>
<td>1,5·10$^{-10}$</td>
</tr>
<tr>
<td>1230</td>
<td>9,15·10$^{-5}$</td>
</tr>
<tr>
<td>1630</td>
<td>2,3·10$^{-1}$</td>
</tr>
<tr>
<td>1730</td>
<td>1,0</td>
</tr>
<tr>
<td>2030</td>
<td>40,8</td>
</tr>
<tr>
<td>2230</td>
<td>298</td>
</tr>
<tr>
<td>2730</td>
<td>14150</td>
</tr>
</tbody>
</table>

1 Механические свойства вольфрама рассмотрены в гл. VII.
* Приближенные данные.
Эмиссионные свойства вольфрама усиливаются введением в металл в процессе его изготовления присадки ThO₂ (1—2%). Пробоюка из тонированного вольфрама после кратковременного нагрева при 2800°C с последующим активированием кратковременным нагревом при 1900—2200°C имеет значения работы выхода φ = 2,63 эВ и константы Ричардсона ρA = 3 A/(см²·K²) [5, 7]. Усиление эмиссии объясняется образованием в результате термообработки адсорбционной пленки тория на вольфраме. Подобное активирующее действие оказывают присадки окислов лантана, иттрия, церия, циркония [3, 6].

Кристаллическая структура

Основная устойчивая модификация вольфрама (α-W) имеет объемноцентрированную кубическую решетку (пространственная группа Оh—Im3m) с периодом а = 3,1583—3,1592 Å [8]. Этот тип решетки сохраняется вплоть до температуры плавления.

Атомный объем 9,49 см³/атом; атомный радиус 1,368 Å, ионные радиусы 0,68 и 0,65 Å для W⁴⁺ и W⁷⁺ соответственно.

Установлено существование β-модификации вольфрама, которая получается при восстановлении тонкого слоя WO³ сухим водородом в интервале температур 440—630°C. При температурах выше 630°C β-W необратимо переходит в α-модификацию (более детально см. с. 121). Рентгенографическая плотность α-W равна 19,26—19,3 г/см³, плотность тянутой тонкой вольфрамовой проволоки имеет близкое значение. Плотность вольфрама в жидкном состоянии 16,65 [17]. Поверхностное натяжение жидкого вольфрама 2300 дин/см [17].

Термические свойства

Температура плавления. Температура плавления вольфрама определялась рядом исследователей оптическими методами в условиях абсолютно черного тела. Наиболее достоверное значение температуры плавления 3380 ± 10°C [2]. Эта величина рекомендована в соответствии с международной температурной шкалой 1948 г. Температура кипения. Надежных данных по температуре кипения нет, приводимые величины экстраполированы из кривых давления пара над твердым вольфрамом. Приближенное значение 5900—6000°C [10].

считает, что они недостаточно точные. Можно принять как более достоверные величины давления пара и скорости испарения, полученные Цвикикером [13, 16] (табл. 3).

Для расчета давления пара твердого вольфрама в интервале температур 2000—3500 К можно использовать уравнение [10]:

\[
\lg p = \frac{42000}{T} + 9,84 - 0,146 \lg T - 0,164 \cdot 10^{-3} T,
\]

где \(p \) — давление пара вольфрама, мм рт. ст.

Давление пара жидкого вольфрама по оценочным данным приведено ниже по Стэллу [18]:

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Давление пара, мм рт. ст.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3990</td>
<td>1</td>
</tr>
<tr>
<td>4337</td>
<td>5</td>
</tr>
<tr>
<td>4507</td>
<td>10</td>
</tr>
<tr>
<td>4690</td>
<td>20</td>
</tr>
<tr>
<td>4886</td>
<td>40</td>
</tr>
<tr>
<td>5007</td>
<td>60</td>
</tr>
<tr>
<td>5403</td>
<td>200</td>
</tr>
<tr>
<td>5666</td>
<td>400</td>
</tr>
<tr>
<td>5927</td>
<td>760</td>
</tr>
</tbody>
</table>

Теплота возгонки вольфрама \(L_{возд} = \Delta H_{298}^0 = 200 \) ккал/моль.
Теплота испарения \(L_{исп} = \Delta H_{298}^0 = 191 \) ккал/моль [19].

Термическое расширение. На основе анализа данных различных авторов Мармер и др. [16] рекомендуют следующие наиболее достоверные значения коэффициентов термического расширения \(\alpha \)-W (отожженная вольфрамовая проволока):

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Терм. коэф. линейного расширения, (10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4,1</td>
</tr>
<tr>
<td>400</td>
<td>4,4</td>
</tr>
<tr>
<td>1400</td>
<td>5,7</td>
</tr>
<tr>
<td>1800</td>
<td>6,2</td>
</tr>
<tr>
<td>2000</td>
<td>6,5</td>
</tr>
<tr>
<td>2200</td>
<td>6,8</td>
</tr>
<tr>
<td>2400</td>
<td>7,1</td>
</tr>
<tr>
<td>2600</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Коэффициент термического расширения деформированного металла выше, чем отожженного. Так, в интервале температур 0—500° С средняя величина коэффициента расширения кованого прутка (диаметр 1 мм) равна \(4,98 \cdot 10^{-6} \), а отожженного при 2800° С в течение 2 мин \(4,45 \cdot 10^{-6} \).

Теплоемкость. В интервале температур 298—2000° С атомная теплоемкость вольфрама описывается уравнением [20]:

\[
C_p = 5,48 + 0,76 \cdot 10^{-3} T.
\]

Теплопроводность. Авторы работы [16] на основе анализа данных ряда работ рекомендуют следующие значения теплопроводности \(\lambda \) в интервале температур 20—2600° С:

<table>
<thead>
<tr>
<th>(t), °C</th>
<th>(\lambda), ккал/(м·наград)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>1000</td>
<td>97</td>
</tr>
<tr>
<td>1200</td>
<td>94</td>
</tr>
<tr>
<td>1400</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(t), °C</th>
<th>(\lambda), ккал/(м·наград)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>80</td>
</tr>
<tr>
<td>1800</td>
<td>88</td>
</tr>
<tr>
<td>2000</td>
<td>86</td>
</tr>
<tr>
<td>2200</td>
<td>84,5</td>
</tr>
<tr>
<td>2400</td>
<td>83</td>
</tr>
<tr>
<td>2600</td>
<td>82</td>
</tr>
</tbody>
</table>
Температуропроводность. Ниже приведены значения коэффициента температуропроводности α, определенные О. А. Краевым и А.А. Стельмахом [21]:

$$
\begin{array}{cccccccc}
t, ^{\circ}C & 1600 & 1800 & 2000 & 2200 & 2400 & 2600 & 2800 & 2950 \\
\alpha, \text{ см}^2/\text{c} & 0,317 & 0,297 & 0,278 & 0,261 & 0,247 & 0,23 & 0,211 & 0,19 \\
\end{array}
$$

Оптические свойства

В табл. 4 приведены важнейшие оптические характеристики вольфрама — удельная поверхностная мощность свободно излучаемой энергии, лучеиспускательная способность, соотношение между яркостной и истинной температурами.

Таблица 4

ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЛЬФРАМА [2, 22]

<table>
<thead>
<tr>
<th>Истинная температура, К</th>
<th>Яркостная температура</th>
<th>Коефициент монохроматич. ского излучения при $\lambda = 6650$ А</th>
<th>Удельная поверхностная мощность, Вт/см2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>$^{\circ}C$</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>966</td>
<td>693</td>
<td>0,456</td>
</tr>
<tr>
<td>1200</td>
<td>1149</td>
<td>876</td>
<td>0,452</td>
</tr>
<tr>
<td>1400</td>
<td>1330</td>
<td>1057</td>
<td>0,448</td>
</tr>
<tr>
<td>1600</td>
<td>1509</td>
<td>1236</td>
<td>0,443</td>
</tr>
<tr>
<td>1800</td>
<td>1684</td>
<td>1411</td>
<td>0,439</td>
</tr>
<tr>
<td>2000</td>
<td>1857</td>
<td>1584</td>
<td>0,435</td>
</tr>
<tr>
<td>2200</td>
<td>2026</td>
<td>1753</td>
<td>0,431</td>
</tr>
<tr>
<td>2400</td>
<td>2192</td>
<td>1919</td>
<td>0,427</td>
</tr>
<tr>
<td>2600</td>
<td>2356</td>
<td>2083</td>
<td>0,423</td>
</tr>
<tr>
<td>2800</td>
<td>2516</td>
<td>2243</td>
<td>0,419</td>
</tr>
<tr>
<td>3000</td>
<td>2673</td>
<td>2400</td>
<td>0,415</td>
</tr>
<tr>
<td>3200</td>
<td>2827</td>
<td>2554</td>
<td>0,411</td>
</tr>
<tr>
<td>3400</td>
<td>3053</td>
<td>2705</td>
<td>0,407</td>
</tr>
<tr>
<td>3655 **</td>
<td>3165</td>
<td>2892</td>
<td>0,402</td>
</tr>
</tbody>
</table>

* Экстраполированные величины.
** Температура плавления.

Электрические и магнитные свойства

Электросопротивление. Значения удельного электросопротивления вольфрама в интервале температур 0—3000° С, полученные различными исследователями, близки между собой. Данные для отожженной проволоки приведены ниже [16, 22]:

$$
\begin{array}{cccccccc}
t, ^{\circ}C & 20 & 400 & 800 & 1200 & 1600 & 1800 \\
\rho, \text{ мкОм} \cdot \text{cm} & 5,5 & 15,5 & 27 & 39 & 52,5 & 59 \\
t, ^{\circ}C & 2000 & 2200 & 2400 & 2600 & 2800 & 3000 \\
\rho, \text{ мкОм} \cdot \text{cm} & 66 & 73 & 80,5 & 88 & 95 & 102 \\
\end{array}
$$
Удельное электросопротивление вольфрамовой проволоки возрастает с возрастанием степени деформации (с уменьшением диаметра). После отжига сопротивление падает до постоянного значения [23].

Сверхпроводимость. Температура перехода вольфрама в состояние сверхпроводимости \(\sim 0.05 \) К.

Термоэлектрические свойства. Вольфрам (наряду с молибденом) характеризуется высокой т. э. д. с. Так, в паре с платиной при температурах 480, 780 и 1200° С т. э. д. с. имеет значения 10,20 и 40 мВ соответственно. Вольфрам электроположителен в паре с платиной [24].

Зависимость т. э. д. с. термопары \(W-Mo \) от температуры в интервале 1200—2000° С близка к линейной, что позволяет использовать термопару для измерения высоких температур (при условии защиты проволок от окисления). Для измерения высоких температур используют также вольфрамо-ренийевые термопары. Т. э. д. с. термопары из сплавов \(W + 5\% Re/W + 20\% Re \) линейно возрастает в интервале температур 0—2500° С. При 2000° С значение т. э. д. с. 30 мВ [25].

2. ХИМИЧЕСКИЕ СВОЙСТВА

Взаимодействие с газами

Кислород. Обзор многочисленных работ по изучению кинетики окисления компактного вольфрама кислородом содержится в монографиях В. Е. Иванова и др. [26], Кофстада [27].

Окисление вольфрама до температур \(\sim 350—500^\circ \) С протекает с малой скоростью — металл покрывается тонкой защитной окисной пленкой низшего окисла, предположительно \(\text{WO}_2 \) [28]. В интервале температур 350—500° С окисление подчиняется параболической зависимости [28, 29]:

\[
\left(\frac{\Delta \text{m}}{A} \right)^2 = K_n \tau + b,
\]

где \(\Delta \text{m} \) — изменение (прибыль) массы образца;
\(A \) — поверхность;
\(\tau \) — время;
\(K_n \) — константа скорости;
\(b \) — постоянная.

Энергия активации параболического окисления 43,6—45,6 ккал/моль [28, 29].

В интервале температур 500—1000° С скорость окисления быстро растет с температурой. Образующаяся окисная оболочка состоит из двух слоев: тонкого плотного (защитного) слоя, прочно связанного с металлом, и желтого рыхлого слоя \(\text{WO}_3 \). В отношении состава плотной пленки мнения разноречивы. Ей приписы-
вают состав WO₂ [30], промежуточного окисла WO₂,72 * [31] и WO₃ [32]. По всей вероятности, пленка состоит из последовательно расположенных слоёв этих окислов.

В рассматриваемом интервале температур в начальный период рост окисной пленки подчиняется параболическому закону. В последующий период параболический закон роста окислы сменяется линейным \(\frac{\Delta m}{A} = Kt \). Таким образом, при окислении вольфрама соблюдается параллельный механизм окисления, согласно которому внутренний плотный слой растет с параболической скоростью и одновременно окисляется до высшего окисла с линейной скоростью. Как показано в работе [33], кинетические кривые окисления в интервале температур 700—1000°С удовлетворительно описываются уравнением:

\[
\frac{\Delta m}{A} = \frac{a}{b} \ln \frac{1}{1 - by/a} + b (f - 1) \tau, \quad (2.4)
\]

где \(\Delta m/A \) — прибыль массы, отнесенная к единице поверхности;

\(y \) — количество кислорода в плотном слое на единицу площади;

\(f \) — отношение количества кислорода, приходящегося на один г-атом металла, в наружном слое к этой же величине во внутреннем слое;

\(a \) и \(b \) — постоянные.

При относительно низких давлениях кислорода (до 1—2 ат) и температурах 700—1000°С скорость линейного окисления пропорциональна \(\rho_{O_2}^{1/2} \), при высоких давлениях (более 5 ат) линейная скорость окисления не зависит от давления [34].

При температурах выше 1000°С существенное влияние на ход окисления вольфрама кислородом оказывает испарение трехокиси вольфрама. В температурной области 1000—1300°С давление кислорода сильно влияет на скорость окисления. При определенном давлении с возрастанием температуры скорость испарения WO₃ может превысить скорость образования окислы. В этом случае наблюдается убыль массы образца [26, 27].

В области температура 1300—1750°С и давлениях кислорода от 1 до 40 мм рт. ст. скорость окисления сильно зависит от давления. Зависимость удельной скорости окисления от температуры и давления описывается уравнением [36]:

\[
j = 14,5e^{\frac{21500}{R}T^{0,62}} \rho_{O_2}^{0,62}, \quad (2.5)
\]

где \(j \) — удельная скорость окисления, г/(см²·мин).

С увеличением температуры до 2000°С скорость окисления (скорость уменьшения массы) снижается, так как при этих температурах возрастает давление диссоциации трехокиси вольфрама [36].

* Об окислах вольфрама см. гл. V.
В работе И. Н. Францевича с сотр. показано, что в интервале температур 600—900° С скорость окисления деформированного вольфрама выше скорости окисления отожженного (рекристаллизованного) вольфрама [35]. Вследствие быстрого окисления детали из вольфрама нельзя использовать при температурах выше 700° С без защитных покрытий. Наиболее перспективны покрытия из дисилицида вольфрама (см. гл. IX).

Водород. Водород не реагирует с вольфрамом вплоть до температуры плавления. В некоторой степени водород, вероятно, растворим в вольфраме, однако количественные данные о равно-весной растворимости отсутствуют. По данным Фухса и Нибура [37], вольфрамовый штабик после спекания в водороде при 3000—3100° С содержит ~2 см³ водорода на 100 г металла. Из этого количества большая часть находится в адсорбированном состоянии. После спекания штабика в вакууме содержание водорода снижается до ~0,7 см³ на 100 г металла.

Пары воды. При температурах 600—700° С и выше вольфрам интенсивно окисляется парами воды с образованием WO₃, промежуточных окислов WₓOᵧ и WO₂, которые при 800—1000° С испаряются, образуя соединения WO₃·nH₂O, WₓOᵧ·nH₂O, WO₂·nH₂O.

В электроосветительных лампах и электронных приборах следы паров воды реагируют с нагретыми до высоких температур (1600—2500° С) деталями из вольфрама по реакции:

\[xW + yH_2O \xrightarrow{1500°C} WₓOᵧ(gaz) + yH_2. \] (2.6)

Пары WₓOᵧ конденсируются на менее нагретых частях прибора (например, на стеклянной стенке лампы), где восстанавливаются водородом до металла. Вновь образовавшиеся пары воды могут снова окислять вольфрамовую деталь. Это явление, известное как «водородо-водяной цикл Ленгмюра», постепенно приводит к выводу из строя лампы или электронного прибора.

Азот и аммиак. В системе вольфрам—азот установлено существование нитридов W₂N, WN, WN₂, а также W₃N и W₂N₃. Эти фазы различные авторы получали при действии NH₃ на тонкодисперсные породы вольфрама и пленки вольфрама при температурах 500—800° С [38]. Нитриды неустойчивы при высоких температурах. С азотом компактный вольфрам реагирует лишь при температурах выше 1500° С. При 2300—2500° С образуется нитрид WN₂. Ниже приведена растворимость азота в вольфраме, возрастающая с повышением температуры [39] (ρ_N₂ = 1 ат):

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Растворимость азота, см³/100 г W</td>
<td>0,001</td>
<td>0,015</td>
<td>0,088</td>
<td>0,304</td>
</tr>
</tbody>
</table>

Галогены. Фтор реагирует с вольфрамом при комнатной температуре. При 150—300° С реакция идет с высокой скоростью с образованием летучего WF₆. С хлором компактный металл активно
взаимодействует при температурах выше 800° C с образованием WCl₆. В присутствии влаги образуются оксихлориды. Пары иода и брома реагируют с вольфрамом при 600—700° C с образованием низших нелетучих галогенидов (WI₂, WBr₂ и др.).

Халькогены и халькогеноводороды. Пары серы и селена, H₂S и H₂Se, реагируют с вольфрамом при температурах выше 400° C (интенсивно при 700—800° C) с образованием дихалькогенидов WS₂ и WSe₂ (см. гл. IX).

Углеводороды. Углеводороды CH₄ при температурах 1100—1200° C взаимодействуют с компактным вольфрамом, образуя карбиды W₂C, WC. При 1400—1600° C карбидизация протекает интенсивно. Даже незначительная примесь карбидов вызывает повышенную хрупкость вольфрама и сильно снижает его электропроводность.

Окись углерода. Примерно до температуры 1400° C вольфрам устойчив в атмосфере CO. При более высокой температуре (1600—1700° C) происходит науглероживание металла с образованием карбидов.

Двуокись углерода. Начиная с температуры 1200° C, компактный вольфрам окисляется CO₂ с образованием WO₂.

Окислы азота. N₂O, NO, NO₂ при температурах выше 600° C окисляют вольфрам до WO₃.

Поведение вольфрама в водных растворах и расплавах реагентов

Вольфрам не корродирует в холодной и нагретой до 100° C воде. На холоду металл практически устойчив против действия соляной, серной, азотной и плавиковой кислот любой концентрации. При температурах 90—100° C вольфрам устойчив в плавиковой кислоте, слегка корродирует в соляной и серной кислотах, несколько заметней в азотной кислоте и царской водке.

В малой степени вольфрам корродирует в хромовой кислоте или смеси ее с серной кислотой [40]. При обычной температуре вольфрам устойчив в смеси азотной и серной кислот. Это используется в производстве вольфрамовых спиралей для удаления моноценовых кернов, растворяющихся в смеси HNO₃ с H₂SO₄. Вольфрам растворяется в смеси азотной и плавиковой кислот и в перекиси водорода [41].

В холодных растворах щелочей и аммиака вольфрам устойчив, но несколько корродирует в нагретых растворах в присутствии кислорода. Анодное окисление в щелочных растворах позволяет быстро перевести вольфрам в раствор (см. с. 86).

Металл быстро окисляется в расплавах NaOH или KOH при доступе воздуха или в присутствии окислителей (NaNO₃, NaNO₂, KClO₃, PbO₂). При этом образуются растворимые в воде вольфраматы щелочных металлов.
Контактное взаимодействие с высокогнеупорными окислами

Взаимодействие вольфрама с огнеупорными окислами определяет границы его применения в контакте с ними [16].

Ниже, по данным работы Джонсона, приведены температуры начала взаимодействия ряда компактных цилиндрических образцов окислов с вольфрамом при выдержке 84 мин в вакууме $10^{-4}-5 \cdot 10^{-8}$ мм рт. ст. [42]:

<table>
<thead>
<tr>
<th>Оксисел</th>
<th>$t_{на}^\circ C$</th>
<th>Характер взаимодействия</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeO</td>
<td>2000</td>
<td>Желтые накипи на BeO</td>
</tr>
<tr>
<td>MgO</td>
<td>2000</td>
<td>Восстановление MgO</td>
</tr>
<tr>
<td>ZrO$_2$</td>
<td>1600</td>
<td>Желтые накипи на ZrO$_2$</td>
</tr>
<tr>
<td>ThO$_2$</td>
<td>2200</td>
<td>Слабое восстановление ThO$_2$</td>
</tr>
</tbody>
</table>

Очевидно, что начало контактного взаимодействия вольфрама с огнеупорными окислами зависит от условий проведения испытаний, состава образцов и принятого метода оценки.

Г. В. Самсонов с сотр. [43] изучал контактное взаимодействие вольфрама с BeO, MgO и ZrO$_2$ на образцах, в которых предварительно образован контакт вольфрама с окислом методом горячего прессования. Затем образцы нагревали в вакууме в течение 0,5—5 ч. В этих условиях по оценке авторов взаимодействие с BeO наблюдается при $1800^\circ C$ при выдержке 1 ч. С окисью магния вольфрам не взаимодействовал при $2100^\circ C$ и выдержке 5 ч.

Взаимодействие вольфрама с двуокисью циркония, стабилизированной добавками CaO, наблюдалось при $1900^\circ C$ при выдержке более 1 ч [43]. Следует отметить, что, по данным Джонсона [42], при контакте ZrO$_2$ с вольфрамом при $2300^\circ C$ образцы лишь немного изменялись.

Коррозия в жидких металлах

Вольфрам обладает высокой стойкостью к коррозии в ряде расплавленных металлов. Так, при $600^\circ C$ скорость коррозии менее 0,025 мм/год в ртути, натрии, калии, галлии и при 645$^\circ C$ в магнии [45]. В сплаве Bi—Pb—Sn (сплав Вуда) вольфрам не корродирует при $600^\circ C$, он устойчив при $700^\circ C$ в эвтектическом сплаве Na—K, в этом сплаве возможна длительная выдержка вольфрама при $1000^\circ C$ без существенной коррозии. Вольфрам практически не взаимодействует с расплавленными висмутом, кальцием, медью, устойчив в олове при $1680^\circ C$. При $1100^\circ C$ вольфрам очень медленно растворяется в жидкому уране. При температурах выше ~$700^\circ C$ металл мало устойчив в жидком алюминии вследствие образования интерметаллидов [44].

3. ОБЛАСТИ ПРИМЕНЕНИЯ ВОЛЬФРАМА

Вольфрам широко применяют в современной технике в виде чистого металла и в ряде сплавов, наиболее важные из которых — легированные стали, твердые сплавы на основе карбида вольфрама, износостоякие и жаропрочные сплавы.
Вольфрам в сталях

Значительная доля вольфрамовых концентратов используется в производстве специальных сталей. В состав широко применяемых быстрорежущих сталей входят от 9 до 24% W; 3,8—4,6% Cr; 1—5% V; 4—10% Co, 0,7—1,5% C. Отличительная особенность быстрорежущей стали состоит в ее способности самозакалываться на воздухе и в высокой температуре упрочняющего отпуска (700—800° C), благодаря которой она сохраняет высокую твердость и износостойкость до 600—650° C.

Кроме быстрорежущих, широко применяют другие легированные инструментальные стали: вольфрамовые (0,8—1,2% W), хромвольфрамкремнистые (2—2,7% W), хромвольфрамовые (2—9% W), хромвольфраммарганцевые (0,5—1,6% W). Вольфрам-содержащие стали используют для изготовления инструмента: сверл, фрез, фильтр, матриц и пуансонов, штампов; деталей пневматических инструментов и др.

Вольфрам входит в состав магнитных сталей. Различают вольфрамовые и вольфрамкобальтовые магнитные стали. Первые содержат 5,2—6,2% W; 0,68—0,78% C; 0,3—0,5% Cr (сортовые стали для постоянных магнитов), вторые 11,5—14,5% W; 5,5—6,5% Mo; 11,5—12,5% Co (магнитотвердые материалы). Они отличаются высокой интенсивностью намагничивания и коэрцитивной силой [55].

Твердые сплавы на основе карбида вольфрама

Карбид вольфрама обладает высокими твердостью, износостойкостью и тугоплавкостью. На основе карбида вольфрама созданы самые производительные инструментальные твердые сплавы. В состав этих сплавов входят 85—95% WC и 5—14% Co. Кобальт служит цементирующей добавкой, придающей сплаву необходимую прочность. Некоторые сорта сплавов, предназначенные преимущественно для обработки сталей, содержат, кроме карбида вольфрама, карбиды титана, тантала и ниобия. Все эти сплавы изготовляют методами порошковой металлургии. Они не теряют высокой твердости и износостойкости при нагревании до 1000—1100° C. Это позволяет сильно увеличить скорости резания (до 150—250 м/мин и выше) и значительно превзойти производительность резания, достигаемую при использовании резцов из лучших инструментальных сталей. Из твердых сплавов изготовляют рабочие части режущих и буровых инструментов.

Кроме спеченных твердых сплавов, содержащих цементирующую присадку (кобальт, никель), для некоторых целей (буровые инструменты, фильтры), где не требуется высокая прочность сплава, а требуется лишь сопротивление истиранию и твердость, применяют литые карбиды вольфрама.

В последнее десятилетие карбид вольфрама стали применять для изготовления специальных игл для автомобильных шин, ра-
ботающих в тяжелых зимних условиях: половина автомобильного парка США использует такие шины [46].

По зарубежным данным ¹, карбид вольфрама используется в следующих отраслях промышленности, % [47]:

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Металлообрабатывающая</td>
<td>54,9</td>
</tr>
<tr>
<td>Горная</td>
<td>24,2</td>
</tr>
<tr>
<td>Производство автомобильных шин</td>
<td>3,0</td>
</tr>
<tr>
<td>Производство различных сплавов</td>
<td>7,4</td>
</tr>
<tr>
<td>Производство боеприпасов</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Жаропрочные и износостойкие сплавы

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. К распространенным и уже давно используемым жаропрочным и износостойким сплавам вольфрама относятся его сплавы с кобальтом и хромом, так называемые стеллиты. Состав их следующий, %: 3—15 W; 25—35 Cr; 45—65 Co; 0,5—2,75 С. Сплавы этого типа применяют главным образом для покрытий (наплавкой) поверхности сильно изнашивающихся деталей машин, например клапанов авиадвигателей, рабочих частей ножниц для горячей резки штампов, лопастей турбин, экскаваторного оборудования, лемехов плугов и др.

Сплавы вольфрама с другими тугоплавкими металлами (танталом, ниобием, молибденом, рением) используют в качестве жаропрочных материалов в авиационной и ракетной технике, а также в других областях, где требуется высокая жаропрочность деталей машин, двигателей и приборов.

Контактные сплавы и «тяжелые сплавы»

В сплавах вольфрама с медью (10—40% Cu) и вольфрама с серебром, приготовленных методом порошковой металлургии, сочетается высокая электрическая и теплопроводность меди и серебра с износостойкостью вольфрама. Вследствие этого они оказались весьма эффективными контактными материалами для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки и др. К этой группе сплавов относятся сплавы высокой плотности, содержащие 90—95% W, 1—6% Ni, 1—4% Cu, а также сплавы, в которых медь заменена железом (до 5%) (см. гл. VIII). Эти сплавы используют для изготовления роторов гироскопов, противовесов к рулям управления самолетов, ракет, радиационных экранов и контейнеров для радиоактивных изотопов и др.

Вольфрам в электровакуумной и электросветильной технике

Вольфрам в виде проволоки, ленты и различных кованых деталей применяют в производстве электроламп, в радиоэлектронике и рентгенотехнике. Вольфрам — лучший материал для нитей и

¹ Результаты обследования, проведенного компанией «Кениметал».

27
<table>
<thead>
<tr>
<th>Марка металла или сплава</th>
<th>Характеристика марки металла</th>
<th>Цель введения специальной присадки или добавки</th>
<th>Рекомендуемые области применения прутков и проволоки</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВЧ</td>
<td>Вольфрам чистый (без присадок)</td>
<td>—</td>
<td>Детали приборов, работающих при низких температурах, не проходящие предварительной обработки при температуре выше 900°С</td>
</tr>
<tr>
<td>ВА</td>
<td>Вольфрам с кремнецелочной и алюминиевой присадками (SiO₂ 0,02—0,05%; K₂O 0,01%; Al₂O₃ 0,001—0,003%)</td>
<td>Повышение температуры первичной рекристаллизации, прочности после отжига, формоустойчивости при высоких температурах (непровисающий вольфрам с крупнокристаллической стабильной структурой)</td>
<td>Детали приборов, требующих применения: 1) непровисающего вольфрама при температурах до 2900°С (спиrale, биспирали ламп накаливания, катоды и подогреватели мощных электронных приборов); 2) вольфрама с высокой температурой первичной рекристаллизации (катоды и подогреватели радиоламп); 3) вольфрама, обладающего после отжига высокой прочностью</td>
</tr>
<tr>
<td>ВМ</td>
<td>Вольфрам с кремнецелочной и торцевой присадками (SiO₂ 0,02—0,05%; K₂O 0,01%; ThO₂ 0,17—0,25%)</td>
<td>Повышение температуры рекристаллизации и увеличение прочности вольфрама при высоких температурах</td>
<td>Детали, работающие при температуре не выше 2100°С в условиях повышенных механических нагрузок (ударов и вибраций)</td>
</tr>
<tr>
<td>ВТ-7, ВТ-10, ВТ-15, ВТ-50</td>
<td>Вольфрам с присадкой окиси тория (ThO₂ 0,7—5%)</td>
<td>Повышение эмиссионных свойств вольфрама</td>
<td>Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп, нерасходуемые сварочные электроды</td>
</tr>
<tr>
<td>ВИ</td>
<td>Повышение эмиссионных свойств</td>
<td>Повышение эмиссионных свойств</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Вольфрам с присадкой окиси итрия (Y2O3, 2,5—3%)</td>
<td>Нерасходуемые сварочные электроды, электроды импульсных приборов</td>
<td>Нерасходуемые сварочные электроды, электроды импульсных приборов</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Прямопаявочные катоды и подогреватели радиоламп, сетки электронных ламп, низкотемпературные приборы</td>
<td>Прямопаявочные катоды и подогреватели радиоламп, сетки электронных ламп, низкотемпературные приборы</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Повышение пластичности вольфрама при высокотемпературной обработке</td>
<td>Повышение пластичности вольфрама при высокотемпературной обработке</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Увеличение величины препятствий перемещению атомов в вольфраме</td>
<td>Увеличение величины препятствий перемещению атомов в вольфраме</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сплавы вольфрама с рением (Re)</td>
<td>Сплавы вольфрама с рением (Re)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP-5, BP-10, BP-20, BAP-5, BAP-10, BAP-20</td>
<td>BP-5, BP-10, BP-20, BAP-5, BAP-10, BAP-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сплав вольфрама с рением с присадкой итрия</td>
<td>Сплав вольфрама с рением с присадкой итрия</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Вольфрам без присадки, в котором доступно повышенное содержание примесей</td>
<td>Вольфрам без присадки, в котором доступно повышенное содержание примесей</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сплав вольфрама с ниобием и берием</td>
<td>Сплав вольфрама с ниобием и берием</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ВНБ</td>
<td>ВНБ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сплавы вольфрама с вольфрамом</td>
<td>Сплавы вольфрама с вольфрамом</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MB-20, MB-50</td>
<td>MB-20, MB-50</td>
<td></td>
</tr>
</tbody>
</table>
спиралей в лампах накаливания. Высокая рабочая температура (2200—2500° С) обеспечивает большую светоотдачу, а малая скорость испарения — длительный срок службы нитей. Из вольфрамовой проволоки изготовляют катоды прямого накала и сетки электронных генераторных ламп, катоды высоковольтных выпрямителей, подогреватели катодов косвенного накала в различных электронных приборах. Из вольфрама делают антикатоды и катоды рентгеновских и газоразрядных трубок, а также контакты для радиоаппаратуры и электроды горелок для атомно-водородной сварки. Вольфрамовая проволока и прутки служат электронагревателями для высокотемпературных печей (до ~3000° С). Вольфрамовые нагреватели работают в атмосфере водорода, инертного газа или в вакууме.

Для изготовления электровакуумных приборов и источников света вольфрам применяют главным образом после легирования его специальными неметаллическими присадками или в виде сплавов с другими тугоплавкими металлами [48, 49].

Широкое применение вольфрама и его сплавов вызвано тем, что он удовлетворяет требованиям, предъявляемым к материалам деталей электровакуумных приборов и источников света. Проволока из вольфрама и его сплавов обладает высокой формоустойчивостью (отсутствие ползучести и провисания) при температуре до 2900° С, высокой температурой первичной рекристаллизации (не ниже 1700° С для тонкой проволоки); крупнокристаллической структурой с продольными границами у проволоки диаметром менее 1 мм после вторичной рекристаллизации («непровисающая» вольфрамовая проволока); высокими эмиссионными характеристиками; минимальным распылением в разряде и при высоких температурах; хорошей спираллизуемостью. Заготовки вольфрама всех марок хорошо обрабатываются в прутки, ленту, проволоку, вплоть до тончайших размеров.

В табл. 5 представлены основные отечественные марки вольфрама и его сплавов и области применения изделий из них [7, 48, 49].

Химические соединения вольфрама

Вольфрамат натрия используют в производстве некоторых типов лаков и пигментов, а также в текстильной промышленности для утяжеления тканей и в смеси с сульфатом и фосфатом аммония для изготовления огнестойких и водоустойчивых тканей.

Вольфрамовая кислота служит протравой и красителем в текстильной промышленности и катализатором при получении высококтанового бензина в химической промышленности. Дисульфид вольфрама WS2 применяют в качестве твердой смазки и катализатора в органическом синтезе, в частности при получении синтетического бензина.

Потребление вольфрамсодержащих материалов в промышленно развитых капиталистических и развивающихся странах в 1974 г.
находилось на уровне 54 тыс. т (в пересчете на концентраты, содержащие 60% WO₃) [50].

Структура потребления вольфрама в той или иной стране существенно зависит от ресурсов молибдена, который может заменить вольфрам как легирующий элемент во многих марках стали, а также от развития тех или иных отраслей промышленности. Это иллюстрируют приведенные ниже данные о структуре потребления вольфрама в различных областях промышленности, % [50—52]:

<table>
<thead>
<tr>
<th>Область применения</th>
<th>ФРГ (1968 г.)</th>
<th>Канада (1971 г.)</th>
<th>Япония (1972 г.)</th>
<th>США (1974 г.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стали</td>
<td>41,0</td>
<td>29</td>
<td>36</td>
<td>14,3</td>
</tr>
<tr>
<td>Твердые сплавы</td>
<td>35,6</td>
<td>66</td>
<td>—</td>
<td>59,6</td>
</tr>
<tr>
<td>Полуфабрикаты из вольфрама</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(проволока, кованые детали, лента)</td>
<td>12,6</td>
<td>2,3</td>
<td>59</td>
<td>13,0</td>
</tr>
<tr>
<td>Жаропрочные сплавы и сплавы с цветными металлами</td>
<td>4,1</td>
<td>—</td>
<td>—</td>
<td>11,0</td>
</tr>
<tr>
<td>Химические соединения</td>
<td>1,6</td>
<td>—</td>
<td>5</td>
<td>0,8</td>
</tr>
<tr>
<td>Прочие</td>
<td>5,1</td>
<td>2,7</td>
<td>—</td>
<td>1,3</td>
</tr>
</tbody>
</table>

В США сравнительно малую долю (14,3%) вольфрама используют в сталях вследствие замены его молибденом. Динамика потребления вольфрама в США приведена в табл. 6.

Таблица 6

ДИНАМИКА ПОТРЕБЛЕНИЯ ВОЛЬФРАМА (ПО СОДЕРЖАНИЮ МЕТАЛЛА) В РАЗЛИЧНЫХ ОБЛАСТЯХ ПРОМЫШЛЕННОСТИ США [53]

<table>
<thead>
<tr>
<th>Область применения</th>
<th>Потребление, т по годам</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сталь:</td>
<td></td>
</tr>
<tr>
<td>Нержавеющие и легированные</td>
<td>1443</td>
</tr>
<tr>
<td>Быстрорежущие и инструментальные</td>
<td>444</td>
</tr>
<tr>
<td>Твердые сплавы</td>
<td>999</td>
</tr>
<tr>
<td>Другие сплавы</td>
<td>2831</td>
</tr>
<tr>
<td>Деформированные полуфабрикаты (проволока, листы и т. д.)</td>
<td>579</td>
</tr>
<tr>
<td>Химические соединения (керамика, удобрения и т. д.)</td>
<td>1240</td>
</tr>
<tr>
<td>Прочие</td>
<td>66</td>
</tr>
<tr>
<td>Итого</td>
<td>6159</td>
</tr>
</tbody>
</table>

31
Глава III

ПРОИЗВОДСТВО ТРЕХОКИСИ ВОЛЬФРАМА

1. СПОСОБЫ ПЕРЕРАБОТКИ ВОЛЬФРАМОВЫХ КОНЦЕНТРАТОВ

В промышленной практике используют различные технологические схемы переработки концентратов с целью получения трехокиси вольфрама, служащей исходным материалом для производства вольфрама, карбида вольфрама и других продуктов. Конечными соединениями процессов переработки сырья обычно являются вольфрамовая кислота или паравольфрамат аммония \(5(NH_4)_2O\cdot12WO_3\cdot5H_2O\), при термическом разложении которых получают трехокись вольфрама.

Выбор схемы зависит от типа и состава концентратов, масштабов производства, требований к чистоте и физическим характеристикам трехокиси вольфрама и ряда конкретных условий, определяющих стоимость переработки сырья. Главной чертой технологической схемы служит избранный способ разложения концентратов. Известные способы разложения можно подразделить на три группы [1, 2].

1. Конечный результат разложения — растворы вольфрамата натрия \(Na_2WO_4\). К этой группе относятся процессы разложения с использованием соды, щелочей, нейтральных солей (\(NaF, NaNO_3\) и др.). Из растворов (после очистки от примесей) выделяют малорасторвимые соединения вольфрама (\(H_2WO_4, CaWO_4\)) или извлекают вольфрам методами экстракции или ионного обмена.

2. Конечный результат разложения — осадки технической вольфрамовой кислоты. К этой группе относятся способы разложения концентратов минеральными кислотами (\(HCl, HNO_3\)). Полученную техническую вольфрамовую кислоту растворяют в аммиачной воде (реже в растворах соды или щелочи) и выделяют из аммиачного раствора паравольфрамат аммония или вольфрамовую кислоту.

3. Конечный результат разложения — кондensed летучих галогенидов и оксигалогенидов вольфрама. К этой группе относятся способы, основанные на хлорировании или фторировании сырья галогенами или их соединениями. Гидролитическим разложением конденсата галогенидов и оксигалогенидов получают вольфрамовую кислоту. Галогенидные способы рассмотрены в гл. IV.

В данной главе рассматриваются технологические процессы переработки концентратов, основанные на использовании первых двух групп способов разложения концентратов.

Принципиальная схема различных вариантов производства вольфрамовой кислоты и паравольфрамата аммония (ПВА) приведена на рис. 3.
2. ВЫСОКОТЕМПЕРАТУРНЫЕ СПОСОБЫ РАЗЛОЖЕНИЯ ВОЛЬФРАМОВЫХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ВОЛЬФРАМАТА НАТРИЯ

Спекание (или сплавление) вольфрамита с содой ¹

Спекание с содой — универсальный способ разложения вольфрамита и шеелита, широко используемый в промышленной практике. При температурах 800—900°С вольфрамит активно реагирует с содой по практически необратимым реакциям.

¹ При температурах 800—850°С шихта находится в полуразплавленном (тестообразном) состоянии, что соответствует термину «спекание». При 900—1000°С шихта плавится.
В отсутствие кислорода:
\[\text{FeWO}_4 + \text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{WO}_4 + \text{FeO} + \text{CO}_2; \]
(3.1)
\[\text{MnWO}_4 + \text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{WO}_4 + \text{MnO} + \text{CO}_2. \]
(3.2)

При условии мольного отношения в вольфрамите \(\text{Fe} : \text{Mn} = 1 : 1 \) изменение свободной энергии \(\Delta G^\circ = 16200 - 39,8 \, T \) кал; \(\Delta G_{100} = -27980 \) кал/моль.

В присутствии кислорода:
\[2\text{FeWO}_4 + 2\text{Na}_2\text{CO}_3 + \frac{1}{2} \text{O}_2 \rightarrow 2\text{Na}_2\text{WO}_4 + \text{Fe}_2\text{O}_3 + 2\text{CO}_2; \]
(3.3)
\[3\text{MnWO}_4 + 3\text{Na}_2\text{CO}_3 \frac{1}{2} \text{O}_2 \rightarrow 3\text{Na}_2\text{WO}_4 + \text{Mn}_3\text{O}_4 + 3\text{CO}_2. \]
(3.4)

Для тех же условий \(\text{Fe} : \text{Mn} = 1 : 1 \) изменение свободной энергии \(\Delta G^\circ = -18200 - 40,1 \, T \) кал; \(\Delta G_{100} = -62300 \) кал/моль.

Реакции (3.3) и (3.4) соответствуют протеканию процесса в производственных условиях.

Избыток соды, равный 10—15% сверх теоретически необходимого количества (ТНК), обеспечивает достаточно полное разложение концентриата (степень разложения 99,5%). Для ускорения разложения минерала в шихту иногда добавляют окислитель — селитру (нитрат натрия) — в количестве 1—4% массы концентриата. Добавление селитры необходимо при сплавлении, так как в этом случае доступ кислорода к компонентам шихты ограничен.

Обычные примеси в вольфрамитовом концентрате — соединения кремния, фосфора, мышьяка, молибдена и др. — при спекании (сплавлении) образуют растворимые натриевые соли \(\text{Na}_2\text{SiO}_3, \text{Na}_3\text{PO}_4, \text{Na}_3\text{AsO}_4, \text{Na}_2\text{MoO}_4. \)

В производственных условиях спекание (сплавление) вольфрамитового концентриата осуществляют в печах периодического или непрерывного действия. При периодическом процессе спекание проводят в небольших отражательных печах площадью пода 6—8 м² с ручным перегребанием. При больших масштабах производства применяют непрерывный процесс спекания (сплавления) в трубчатых вращающихся печах.

Для сплавления вольфрамита с содой в присутствии окислителя в работах, опубликованных в 20-х годах, рекомендовалось использовать вращающуюся печь с трубой из сплава железа с хромом [3]. Основной недостаток печи — быстрое разъедание трубы щелочным плавом. Труба, имеющая толщину стенки 25 мм, служит только около 40 сут. Другой недостаток — необходимость сохранения равномерного распределения температуры вдоль трубы печи для предупреждения застывания плава в отдельных ее зонах.

Для снижения температуры плавления шихты и получения однородного жидкотекучего плава в шихту предложено добавлять хлористый натрий 1. Однако большое содержание хлористого на-

1 Пат. (Англия), № 122051, 1919.
трия и повышенное содержание примесей в растворах, получающихся после выщелачивания плава, не позволяло получать чистые химические соединения вольфрама при существовавших способах очистки растворов вольфрамата натрия. Поэтому способ не нашел применения в промышленной практике.

Позже в промышленности был освоен непрерывный способ спекания вольфрамитовых концентратов с содой в обычных трубчатых вращающихся печах, футерованных шамотом, разработанный в СССР [4, 5]. Шихту составляют так, чтобы она не плавилась, а оставалась при температурах 850—900° C в форме спечившихся комков. Это достигается добавлением в шихту хвостов выщелачивания спека в количестве, снижающем содержание WO₃ в шихте до 20—22%. Таким образом устраняются затруднения, связанные с быстрым разъединением футеровки расплавом и образованием наростов в отдельных зонах печи. Степень вскрытия концентрата высокая (99—99,5%). Недостаток процесса — разубоживание шихты хвостами, что ведет к снижению производительности печи. Однако возможность использования стандартных вращающихся печей и длительность службы печи при непрерывном процессе в некоторой мере компенсируют этот недостаток. Печь длиной 20 м и внешним диаметром 2,2 м, делающая один оборот за 2,5 мин, при угле наклона 3° обеспечивает суточную производительность 25 т шихты с содержанием 20—22% трехокиси вольфрама.

Детальное описание процесса и схема цепи аппаратов приводятся в работах [5, 6].

Двустадийное выщелачивание спека, проводимое при 80—90° C, обеспечивает высокое извлечение вольфрама в раствор (98—99%). Крепкие растворы плотностью 1,26—1,4 (в зависимости от принятого режима) содержат 190—270 г/л WO₃. Содержание WO₃ в хвостах колеблется от 1,5 до 2%. Более богатые хвосты возвращаются в голову процесса. Непрерывный процесс спекания вольфрамита с содой, подобный описанному выше, применяется в Великобритании на заводе «Рейнем» [7].

В связи с развитием экстракционной технологии извлечения вольфрама из растворов вольфрамата натрия в США вновь обратились к способу разложения вольфрамитовых концентратов сплавлением с содой и хлористым натрием с добавками селитры. В этом случае процесс протекает быстро и устраняется уплотнение выше недостаток непрерывного спекания в футерованных огнеупорах барабанных печах. Опробование процесса проводилось в тигельной и отражательной печах. Шихту, состоящую из вольфрамита (с содержанием WO₃ 73%), Na₂CO₃, NaCl и NaNO₃ при соотношении масс 1 : 0,25 : 0,16 : 0,05, плавили в отражательной печи в течение 45 минут при температуре 800° C. Извлечение вольфрама в водный раствор из плава составило 96,8% щелоки, содержащие Na₂WO₄ и NaCl, после очистки от примесей (Si, Sb, S, As, Mo) направляются на экстракционное извлечение вольфрама с получением концентрированного паравольфрамата аммония.

Значительный интерес представляют данные исследователей ГДР [8], показавшие возможность снижения температуры спекания вольфрамита с содой до 700° C путем механического активирования компонентов шихты. Последнее достигается совместным вибромолотом концентрата с содой.

1 Пат. (США), № 1089913, 1967.
Взаимодействие шеелита с содой в интервале температур 800—900°С может протекать по двум реакциям:
\[
\begin{align*}
\text{CaWO}_4 + \text{Na}_2\text{CO}_3 &= \text{Na}_2\text{WO}_4 + \text{CaCO}_3, \\
\Delta G^\circ &= 1600 + 2,67T \text{ кал}; \\
\Delta G^\circ_{1100} &= +4460 \text{ кал}; \\
\text{CaWO}_4 + \text{Na}_2\text{CO}_3 &= \text{Na}_2\text{WO}_4 + \text{CaO} + \text{CO}_2, \\
\Delta G^\circ &= 44600 - 35,63T \text{ кал}; \\
\Delta G^\circ_{1100} &= +5407 \text{ кал}.
\end{align*}
\]

Изменение свободной энергии для обоих реакций имеет небольшое положительное значение. Реакция (3.6) в заметной мере идет выше 850°С, когда наблюдается термическое разложение карбоната кальция. Удаление CO₂ из сферы реакции способствует ее протеканию. Присутствие свободной окиси кальция в спеке приводит при выщелачивании к образованию вторичного шеелита. Это снижает степень извлечения вольфрама в раствор. При большом избытке соды образование вторичного шеелита в значительной мере подавляется взаимодействием сody с Ca(OH)₂ с образованием CaCO₃. Чтобы снизить расход сody и предотвратить образование свободной окиси кальция, в шихту добавляют кварцевый песок для связывания окиси кальция в труднорастворимые силикаты:
\[
\begin{align*}
\text{CaWO}_4 + \text{Na}_2\text{CO}_3 + \text{SiO}_2 &= \text{Na}_2\text{WO}_4 + \text{CaSiO}_3 + \text{CO}_2, \\
\Delta G^\circ &= 22900 - 35,73T \text{ кал}; \\
\Delta G^\circ_{1100} &= -16403 \text{ кал}; \\
2\text{CaWO}_4 + 2\text{Na}_2\text{CO}_3 + \text{SiO}_2 &= 2\text{Na}_2\text{WO}_4 + \text{Ca}_2\text{SiO}_4 + 2\text{CO}_2, \\
\Delta G^\circ &= 58700 - 72,9T \text{ кал}; \\
\Delta G^\circ_{1100} &= -21490 \text{ кал}; \\
3\text{CaWO}_4 + 3\text{Na}_2\text{CO}_3 + \text{SiO}_2 &= 3\text{Na}_2\text{WO}_4 + \text{Ca}_3\text{SiO}_5 + 3\text{CO}_2, \\
\Delta G^\circ &= 106800 - 109T \text{ кал}; \\
\Delta G^\circ_{1100} &= -13100 \text{ кал}.
\end{align*}
\]

Взаимодействие протекает преимущественно по реакции (3.8) и частично по реакции (3.9). Это следует из данных работы [12]. Максимальная степень разложения, независимо от избытка соды, наблюдается при отношении CaO/SiO₂ в шихте, равном 2,5. Образование ортосиликата кальция Ca₂SiO₄ следует также из

1 В приведенных ниже расчетах изменения свободной энергии реакций приняты следующие значения стандартных термодинамических функций:

<table>
<thead>
<tr>
<th>Соединение</th>
<th>$-\Delta H^\circ_{298}$, ккал/моль</th>
<th>S°_{298}, ккал/моль на град</th>
<th>Соединение</th>
<th>$-\Delta H^\circ_{298}$, ккал/моль</th>
<th>S°_{298}, ккал/моль на град</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaWO₄</td>
<td>390</td>
<td>30,2</td>
<td>CaO</td>
<td>151,4</td>
<td>9,56</td>
</tr>
<tr>
<td>Na₂WO₄</td>
<td>370,1</td>
<td>38,5</td>
<td>CaSiO₃</td>
<td>383,1</td>
<td>19,6</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>270,26</td>
<td>33,17</td>
<td>Ca₂SiO₄</td>
<td>543,2</td>
<td>30,5</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>288,4</td>
<td>22,2</td>
<td>Ca₃SiO₅</td>
<td>691,4</td>
<td>40,3</td>
</tr>
<tr>
<td>SiO₂</td>
<td>210,2</td>
<td>10,0</td>
<td>Na₂SiO₃</td>
<td>373,19</td>
<td>27,2</td>
</tr>
<tr>
<td>CO₂</td>
<td>94,05</td>
<td>51,07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Следует учитывать, что точность оценочных расчетов в данном случае ±5000 кал/моль.
данных о системе CaO—SiO₂—Na₂O—CO₂ [15]. При любом соотношении CaO/SiO₂ в этой системе вначале всегда образуется ортосиликат кальция, индифферентный к карбонатным расплавам. Лишь при температурах выше 1100°С ортосиликат кальция при наличии невязанной двуокиси кремния переходит в метасиликат кальция CaSiO₃.

При температурах 800—900°С, избытке соды, составляющем 100% от THK, и отношении CaO/SiO₂, равном 2,5, реакция заканчивается за 20 мин. По всей вероятности, основная реакция (3.8) идет в две стадии:

\[
\begin{align*}
\text{CaWO}_4 + \text{Na}_2\text{CO}_3 &\rightleftharpoons \text{Na}_2\text{WO}_4 + \text{CaCO}_3; \\
2\text{CaCO}_3 + \text{SiO}_2 &\rightarrow \text{Ca}_2\text{SiO}_4 + 2\text{CO}_2.
\end{align*}
\]

(3.10) (3.11)

Параллельно возможно взаимодействие по реакциям:

\[
\begin{align*}
\text{Na}_2\text{CO}_3 + \text{SiO}_2 &\rightarrow \text{Na}_2\text{SiO}_3 + \text{CO}_2, \\
\Delta G° &\approx 13200 - 36,1T \text{ кал}; \\
\Delta G°_{1100} &\approx -26910 \text{ кал}; \\
\text{CaWO}_4 + \text{Na}_2\text{SiO}_3 &\rightleftharpoons \text{Na}_2\text{WO}_4 + \text{CaSiO}_3, \\
\Delta G° &\approx 10000 - 0,7T \text{ кал}; \\
\Delta G°_{1100} &\approx +2300 \text{ кал}.
\end{align*}
\]

(3.12) (3.13)

Эти реакции, однако, не являются определяющими. Так, за время полного разложения шеелита (20 мин) степень равномерного по реакции (3.12) при тех же температурах не превышает 20% [13]. С малой скоростью протекает и реакция (3.13). Эта реакция обратима, при определенном соотношении концентраций компонентов она протекает с образованием вторичного шеелита, обнаруженного в спеке.

Оптимальной для процесса разложения шеелита является шихта, содержащая 180—200% Na₂CO₃ от THK при соотношении CaO/SiO₂, равном 2,5. Следует, однако, уточнить оптимальный состав шихты в каждом конкретном случае. Так, при содержании в концентрате флюорита часть соды расходуется на взаимодействие по реакции:

\[
\text{CaF}_2 + \text{Na}_2\text{CO}_3 = 2\text{NaF} + \text{CaCO}_3.
\]

(3.14)

В связи с этим при расчете количества кварцевого песка необходимо учитывать суммарное количество CaO (в шеелите, кальците, а также «вторичном» CaCO₃, образующемся по реакции с флюоритом, апатитом и др.).

В производственной практике отечественных предприятий спекание шеелита с содой и кварцевым песком проводят в барабанных печах, футерованных шамотным огнеупором, как описано выше для вольфрамита. Для предотвращения плавления в шихте добавляют отвалы вышелачивания, которые снижают содержание WO₃ в шихте до 20—22%. Спекание ведут при температурах 850—900°С. Ввиду использования однотипного оборудования обычно на заводах, использующих вскрытие концентратов спеканием с со-
дой, перерабатывают как вольфрамитовые, так и шеелитовые концентраты [5, 7].

При переработке шеелитовых концентратов, содержащих значительные количества кальцита, Бурвелл ¹ рекомендует проводить сплавление шеелита с содой и кварцевым песком в интервале температур 700—825° С (для получения жидкотекучего плава в шихту вводится хлористый натрий). В этих условиях кальцит термически не разлагается, что снижает расход соды. Бурвелл считает, что при 700—825° С в процессе взаимодействия преимущественно образуется трехкальциевый силикат по реакции (3.9). В шихту вводят кварцевый песок в количестве 150% от ТНК по реакции (3.9), соду, хлористый натрий и небольшое количество нитрата натрия (для окисления сульфидов).

Электротермический способ разложения шеелитовых концентратов

В Институте металлургии им. А. А. Байкова предложен и исследован электротермический способ получения вольфрамата натрия из шеелитовых концентратов [14, 97] *. Гранулированная шихта, содержащая концентрат, соду и кремнезем, плавится при температурах 1400—1500° С в дуговой руднотермической электропечи с закрытым сводом. Одна из особенностей процесса — расложение в жидком состоянии продуктов плавки на два слоя: верхний — силикатный шлак и нижний — вольфрамат натрия. Слои легко отделяются один от другого. Вольфрамат натрия вышелачивается водой и перерабатывается по обычной технологии. При плавлении тырынгузского шеелитового концентрата (47,5% WO₃; 7,98% MoO₃; 31,58% CaO; 1,38% Al₂O₃; 2,98% SiO₂; 1,09% MgO; 0,49% S) шихта содержала, %: 61,45 концентрат, 28 кальцинированной соды, 10,55 кремнезема.

Хорошее расложение и высокая степень превращения шеелита в вольфрамат натрия достигаются при расходе соды 160—165% от ТНК и соотношении в шихте CaO/SiO₂, равном 1,22—1,25. В присутствии 1,5—3% Al₂O₃ из шихты это отношение повышается до 1,35.

Минералогическим анализом продуктов сплавления в оптимальных условиях установлено, что основной минеральной составляющей шлака является двукальциевый силикат — ларнит (Ca₂SiO₄). Кроме того, в шлаке содержатся другие силикаты — Na₂Ca₂Si₂O₇ и Na₂Ca₃Si₃O₁₄. В нижнем слое, кроме вольфрамата натрия, обнаружены те же натрий-кальцияне силикаты и вторичный шеелит (результат взаимодействия CaSiO₃ с Na₂WO₄ на границе раздела фаз). Эти соединения образуют после вышелачивания Na₂WO₄ водой нерастворимый остаток, масса которого составляет 3—3,5% от массы нижнего слоя.

В силикатном шлаке содержится не более 2,5% WO₃. В шлаке переходит 40—50% S, 65—75% P и 100% Fe. Таким образом, раздельный слив расплавов шлака и вольфрамата натрия позволяет уже на стадии пирометаллургического передела освободиться от большей части примесей, что упрощает гидрометаллургическую переработку растворов вольфрамата натрия. Извлечение вольфрама в раствор составляет около 98%. Расход электроэнергии на 1 т концентрата равен 1100 кВт·ч.

К преимуществам рассматриваемой технологии следует отнести высокую производительность процесса плавки, меньший расход реагентов (соды и кремнезема) и меньший объем фильтруемой пульпы, а также более низкое содержание примесей в растворах вольфрамата натрия по сравнению с обычной технологией спекания шеелита с содой. Для промышленного использования решающее значение имеют возможность четкого разделения вольфрамата натрия и силикатного шлака и содержание WO₃ в шлаке.

¹ Пат. (США), № 1089913, 1967.
Спекание вольфрама с сульфатами

Применение сульфатов натрия или аммония для разложения вольфрамата представляет некоторый интерес в связи с доступностью и низкой стоимостью технических сортов этих реагентов. Однако они не нашли промышленного использования.

Спекание с сульфатом натрия. По данным Смитэллса [9], спекание вольфрамата с сульфатом натрия дает удовлетворительную степень разложения, если в шихту добавляется кош (в расчете на восстановление сульфата до сульфита натрия) и небольшое количество соды. В этом случае взаимодействие протекает по реакции:

$$ FeWO_4 + 2Na_2SO_4 + 2C = Na_3WO_4 + FeO + Na_2O + 2CO + 2SO_2. \quad (3.15) $$

Оптимальная температура, при которой шихта не плавится и остается сыпучей, равна 665°С. В этих условиях извлечение вольфрама в раствор достигает 93%, т. е. ниже, чем при спекании с содой. К недостаткам способа следует также отнести выделение вредных газов (SO_2, CO) в процессе спекания. Вследствие этого способ не нашел промышленного применения.

Спекание с сульфатом аммония. Исследования, выполненные в Иркутском политехническом институте А. П. Надольским с сотр. [10, 11], показали, что при нагревании смеси вольфрамата с сульфатом аммония в интервале температур 480—520°С протекают реакции:

$$(NH_4)_2SO_4 \rightarrow NH_4HSO_4 + NH_3;$$

$$2FeWO_4 + 6NH_4HSO_4 + \frac{1}{2} O_2 = 2WO_3 + 2(NH_4)_3 Fe(SO_4)_3 + 3H_2O; \quad (3.16)$$

$$2MnWO_4 + 3NH_4HSO_4 = 2WO_3 + (NH_4)_2Mn_2(SO_4)_3 + NH_3 + 2H_2O. \quad (3.17)$$

Двойные сульфаты железа и марганца затем разлагаются с образованием сульфатов марганца и железа, аммиака и SO_3. При расходе сульфата аммония 200—300% от стехиометрического количества и продолжительности спекания 2—3 ч степень разложения гибернитового концентриата (66% WO_3; 14,2% Mn и 3,08% Fe) достигает 98—99%. Продукт разложения, содержащий WO_3, сульфаты железа и марганца, кремнезем, авторы рекомендуют обрабатывать 30%-ной соляной кислотой (с переводом Fe и Mn в раствор). Затем вольфрамовый ангидрид извлекают в водный раствор аммиака. Представляется более целесообразным выщелачивание спека при нагревании растворами соды и последующее экстракционное извлечение вольфрама из растворов вольфрамата натрия, содержащих значительные количества сульфата натрия.

3. ГИДРОМЕТАЛЛУРГИЧЕСКИЕ СПОСОБЫ ВСКРЫТИЯ ВОЛЬФРАМОВЫХ КОНЦЕНТРАТОВ

Автоклавно-содовый способ разложения вольфрамовых концентратов

Физико-химические основы процесса. Автоклавно-содовый способ предложен и разработан в СССР проф. В. С. Сырокомским [161, проф. И. Н. Масленников [17] применительно к переработке шелелитовых концентратов и промпродуктов и в настоящее время широко используется на отечественных заводах [18—22], а также на предприятиях США [23—25], Японии [26, 27], Великобритании [7] и ФРГ [28]. Преимущества автоклавно-содового разложения вольфрамового сырья перед способом спекания состоят в исключении печного процесса, предшествующего выщелачива-
нию, и несколько меньшем содержании примесей (особенно фосфора и мышьяка) в вольфраматных растворах. Кроме того, способ применен к вскрытию не только стандартных концентратов, но и низкосортных промпродуктов и хвостов обогащения, содержащих 4—5% WO₃.

Процесс разложения шеелита растворами соды основан на обменной реакции:

\[
\text{CaWO}_4(тв) + \text{Na}_2\text{CO}_3(раств) \rightleftharpoons \nonumber \\
\Rightarrow \text{Na}_2\text{WO}_4(раств) + \text{CaCO}_3(тв).
\]

(3.18)

Детальный обзор работ по изучению равновесия и кинетики этой реакции, проведенных советскими исследователями, дан в монографии [22].

С достаточной скоростью и полнотой реакция протекает при большом расходе соды (250—300% от ТНК) и температурах 200—225° С, что требует осуществления процесса в автоклавах. Высокий расход соды обусловлен относительно малыми значениями концентрационной константы равновесия реакции разложения Кс, которая возрастает с повышением температуры и зависит от содового эквивалента (отношение количества молей соды к одному молю CaWO₄), значительно понижаются по мере его увеличения ¹.

Для полного извлечения вольфрама в раствор при обработке чистого шеелита при 200° С минимальный содовый эквивалент должен быть равен 2,5, а при 225° С 2,0. Для реальных концентратов, содержащих примеси других минералов, эта величина выше и зависит от содержания в них WO₃. Так, для шеелитовых концентратов с содержанием 45—55% WO₃ при температуре обработки 225° С необходим содовый эквивалент 2,5—3,0, тогда как для промпродуктов, содержащих 15—20% WO₃, для обеспечения высокого извлечения требуется эквивалент соды, равный 4,0—4,5.

Разложение растворами соды в автоклавах применимо также и к вольфрамитовым концентратам, однако реакция в этом случае протекает сложнее, так как сопровождается гидролитическим разложением карбонатов железа и марганца с выделением углекислого газа [22].

Упрощенно разложение вольфрамита можно представить следующими реакциями:

\[
\text{MeWO}_4(тв) + \text{Na}_2\text{CO}_3(раств) \rightleftharpoons \nonumber \\
\Rightarrow \text{MeCO}_3(тв) + \text{Na}_2\text{WO}_4(раств);
\]

(3.19)

\[
\text{MeCO}_3(тв) + \text{H}_2\text{O} \rightleftharpoons \text{Me(OH)}_2 + \text{CO}_2(газ);
\]

(3.20)

\[
\text{CO}_2(газ) + \text{Na}_2\text{CO}_3(раств) \rightleftharpoons 2\text{NaHCO}_3(раств).
\]

(3.21)

¹ Перлов П. М. Изучение взаимодействия вольфрамата кальция с растворами соды при автоклассом процессе с целью сокращения расхода соды. Автореф. канд. дисс. Л., 1955.
Поскольку образование бикарбоната приводит к снижению концентрации соды и снижению извлечения вольфрама, приходится увеличивать содовый эквивалент. В зависимости от состава перерабатываемых вольфрамитовых концентратов расход соды, обеспечивающий высокую степень вскрытия при температуре 225°С, колеблется от 300 до 450% от ТНК.

Периодический выпуск (сдувка) углекислого газа позволяет несколько снизить расход соды. Влияние сдувки, однако, невелико при повышенных содовых эквивалентах, обеспечивающих высокую степень разложения вольфрамита. Образование гидрокарбоната натрия устраняется добавками в автоклавную пульпу NaOH, CaO или MgO. В результате введения известня расход соды можно снизить на 30—50% [22].

Скорость разложения вольфрамита растворами соды можно увеличить, добавляя окислители. Практическое значение имеет применение кислорода (воздуха). Влияние кислорода на процесс разложения вольфрамита объясняется поверхностным разрушением его кристаллической решетки при окислении двухвалентных железа и марганца кислородом, сорбирующимися на поверхности минерала.

Исследования кинетики взаимодействия шеелита (в форме пластинок с известной поверхностью) с растворами соды в интервале температур 150—250°С показали, что пленки карбоната кальция пористые и до толщины 100—130 мкм не влияют на скорость процесса. Так, при 200°С в течение первых 2 ч растворение протекает с постоянной скоростью 3,55·10^{-8} моль/(см²·с), причем толщина пленки карбоната кальция достигала 110 мкм. Пористость пленок объясняется тем, что молярный объем CaCO₃ меньше молярного объема CaWO₄ (отношение молярных объемов равно 0,75).

При интенсивном перемешивании взаимодействие протекает в кинетической области, энергия активации процесса \(E = 18 \pm 22 \) ккал/моль [29]. Следует учитывать, что при недостаточной интенсивности перемешивания (что имеет место в горизонтальных вращающихся автоклавах) реализуется промежуточный режим: скорость процесса определяется и скоростью подвода реагента к поверхности, и скоростью химического взаимодействия. Как видно из рис. 4, удельная скорость реакции уменьшается примерно обратно пропорционально возрастанию отношения молярных концентраций Na₂WO₄/Na₂CO₃ в растворе и приближению его к равновесному значению. Это обусловливает необходимость применения значительного «кинетического» избытка соды. С целью
снижения расхода соды осуществляют двустадийное противоточное выщелачивание. Однако расход соды и в этом случае не ниже 260% от ТНК.

Поведение примесей сопутствующих минералов. В вольфрамовых концентрах и промпродуктах в зависимости от вещественного состава руды могут присутствовать минералы кальция (кальцит, апатит, флюорит), кварц, силикаты и алюминосиликаты, минералы молибдена (мolibденит, повеллит), минералы меди (чаще халькопирит), мышьяка (арсенопирит или скородит), иногда минералы олова (касситерит), висмута (висмутин) и сурымы (антимонит). Содержание примесей в растворах автоклавно-содового процесса определяется взаимодействием перечисленных минералов с растворами соды при температурах 200—225° С (табл. 7).

Таблица 7

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Минерал</th>
<th>Характер взаимодействия минерала с растворами соды</th>
<th>Соединение, переходящее в раствор</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фосфор</td>
<td>Апатит Ca₅(PO₄)₃F</td>
<td>Реагирует по обменной реакции с образованием фосфата и фторида натрия</td>
<td>Na₂HPO₄; (NaF)</td>
</tr>
<tr>
<td>Мышьяк</td>
<td>Арсенопирит FeAsS</td>
<td>Реагирует с образованием растворимой тиосоли</td>
<td>Na₂HASO</td>
</tr>
<tr>
<td></td>
<td>Скородит FeAsO₄</td>
<td>Реагирует с образованием арсената натрия</td>
<td>Na₂HASO₄</td>
</tr>
<tr>
<td></td>
<td>Флюорит CaF₂</td>
<td>Реагирует по обменной реакции</td>
<td>NaF</td>
</tr>
<tr>
<td></td>
<td>Кварц, силикаты, алюминосиликаты</td>
<td>Реагируют с образованием растворимых силикатов и алюминатов натрия</td>
<td>Na₃SiO₄; NaAl(OH)₄</td>
</tr>
<tr>
<td>Молибден</td>
<td>Молибденит MoS₂</td>
<td>Не реагирует в отсутствие окислителя</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Повеллит CaMoO₄</td>
<td>Реагирует по обменной реакции</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Касситерит SnO₂</td>
<td>Практически не реагирует</td>
<td>Na₂MoO₄</td>
</tr>
<tr>
<td>Олово</td>
<td>Халькопирит CuFeS₂</td>
<td>Частично взаимодействует с образованием неустойчивых комплексных анионов Cu (CO₃)₂⁻</td>
<td>Na₂Cu(CO₃)₂</td>
</tr>
<tr>
<td>Медь</td>
<td>Антимонит Sb₂S₃</td>
<td>Практически не реагирует</td>
<td></td>
</tr>
<tr>
<td>Сурьма</td>
<td>Висмутин Bi₂S₉</td>
<td>То же</td>
<td></td>
</tr>
</tbody>
</table>
Из табл. 7 следует, что в растворах могут присутствовать примеси соединений кремния, фосфора, мышьяка, фтора, молибдена, алюминия.

Растворение ряда минералов сопровождается образованием гидрокарбоната, например по реакциям:

$$2\text{FeAsO}_4 + 6\text{CO}_3^{2-} + 6\text{H}_2\text{O} = 2\text{Fe(OH)}_3 + 2\text{AsO}_4^{2-} + 6\text{HCO}_3^-;$$ \hspace{1cm} (3.22)

$$\text{SiO}_2 + 2\text{CO}_3^{2-} + \text{H}_2\text{O} = \text{SiO}_3^{2-} + 2\text{HCO}_3^-;$$ \hspace{1cm} (3.23)

$$\text{Al}_2\text{O}_3 + 2\text{CO}_3^{2-} + 5\text{H}_2\text{O} = 2\text{Al(OH)}_4^- + 2\text{HCO}_3^-.$$ \hspace{1cm} (3.24)

Образование гидрокарбоната, снижая рН раствора, способствует протеканию гидролиза силикатов и алюминатов. Содержание примеси кремниевой кислоты в растворах после выщелачивания шеелитовых концентратов выше, чем после выщелачивания вольфрамитовых, так как в последнем случае в растворе более высокая концентрация ионов HCO_3^-.

Для окисления примеси молибдена (с целью извлечения молибдена в вольфраматный раствор) необходимо проводить выщелачивание с введением в автоклав кислорода (или воздуха) или вводить в пульпу окислители, например измельченный пиролюзит.

Практика автоклавно-содового выщелачивания. Выщелачивание проводят в автоклавах трех типов:

1) вертикальных автоклавах периодического или непрерывного действия с обогревом и перемешиванием пульпы острым паром;
2) горизонтальных вращающихся автоклавах с обогревом острым паром;
3) вертикальных автоклавах с мешалками и обогревом глухим паром.

Ниже рассмотрено осуществление выщелачивания на некоторых отечественных и зарубежных предприятиях.

На заводе «Скопингидроцветмет» шеелитовые и вольфрамитовые концентраты, промпродукты, хвосты флотации доизмельчают в шаровой мельнице, работающей в замкнутом цикле со спиральным классификатором. Слив поступает в смеситель, куда подается сода. Пульпа подогревается в смесителе паром до температуры 80—100°С и подается насосом в вертикальные автоклавы емкостью 5 м³. Пульпа из автоклава через самоиспарители поступает на фильтрацию (дисковые фильтры) с последующей двукратной репульпацией кека [21, 22].

Продукты с невысоким содержанием вольфрама (12—22% WO₃) выщелачивают при содовом эквиваленте 4, температуре 225°С, давлении ~25 ат, начальном отношении t : x = 1 : 2 в течение 4 ч. Извлечение вольфрама в раствор достигает 96% при содержании в полученном растворе 20—25 г/л WO₃. Концентраты, содержащие 28—48% WO₃, выщелачивают при содовом эквиваленте 3,5, начальном отношении t : x = 1 : 4, температуре 220°С,
продолжительности выщелачивания 5 ч. Извлечение вольфрама в раствор составляет 97—99%. Богатые концентраты (58—68% WO₃) разлагаются при содовом эквиваленте 3—3,5, отношении т:ж = 1:3—1:3,5, температуре 225° C и времени обработки 4 ч. Извлечение вольфрама в раствор колеблется от 95 до 98%. Расторы содержат 100—200 г/л WO₃ и 100—150 г/л Na₂CO₃.

Налчийский гидрометаллургический завод перерабатывает промпродукт, содержащий 45—50% WO₃ и 5—6% Moобщ (из них 0,1—0,3% молибдена сульфидного) [21, 22]. Выщелачивание проводится по двустадийной схеме в горизонтальных вращающихся автоклавах емкостью 10 м³. Нагрев автоклава осуществляют острым паром (температура пара 250° C, давление 27 ат), разбавление пульпы при выщелачивании составляет 30—35%. В автоклавную пульпу для окисления молибдена вводят пиросульфит. При двустадийном выщелачивании содовый эквивалент снижается с 3,5—4,0 до 2,5—3,0; получаемый автоклавный шелок содержит, г/л: 100—130 WO₃; 5—8 Mo; 80—90 Na₂CO₃. Общее извлечение вольфрама в раствор достигает 99%.

В последние годы на некоторых отечественных предприятиях освоен процесс непрерывного разложения шеелита растворами соды в вертикальных автоклавах с транспортировкой и нагревом пульпы острым паром [132]. Переход на непрерывный процесс позволил увеличить производительность автоклавного узла вдвое, автоматизировать и полностью механизировать процесс.

Пути совершенствования и интенсификации автоклавно-содового способа разложения концентратов

Регенерация или выведение избыточной соды из автоклавных щелоков. Основной недостаток автоклавно-содового способа — большой расход соды (2—3 т на 1 т WO₃ в сырье). Высокая концентрация избыточной соды в растворах (80—100 г/л) влечет за собой повышенный расход соляной кислоты на нейтрализацию растворов и соответственно повышенные количества вредных сбросов хлористого натрия.

Наметилось несколько путей регенерации или выведения соды из автоклавных растворов: метод кристаллизации, выделение гидрокарбоната и метод электродиализа.
Кристаллизацией можно выделить 60—70% соды, охлаждая растворы (130—150 г/л избыточной соды) до 0°С. Извлечение соды может быть повышено предварительной выпаркой растворов перед кристаллизацией. Поскольку сода выделяется с кристаллизационной водой (Na₂CO₃·10H₂O), концентрация WO₃ в растворах повышается [31].

Выделение избыточной соды в форме гидрокарбоната основано на более низкой растворимости NaHCO₃ по сравнению с растворимостью соды (рис. 5). Для образования гидрокарбоната проводится карбонизация раствора:

\[
\begin{align*}
\text{Na}_2\text{CO}_3 + \text{CO}_2 + \\
\text{H}_2\text{O} \rightleftharpoons 2\text{NaHCO}_3
\end{align*}
\]
(3.25)

Скорость образования гидрокарбоната лимитируется стадией абсорбции углекислого газа, поэтому карбонизацией целесообразно проводить в автоклаве (рсо₂ ≈ 7 ат). Извлечение соды в осадки гидрокарбоната NaHCO₃·nH₂O составляет 60—65%. Осадок после сушки возвращается в виде карбоната на автоклавное разложение [32].

Выведение избыточной соды электродиализом основано на электрохимическом разложении соды в двухкамерной электродиализной ячейке, разделенной катионитовой мембраной, пропускающей только катионы. В анодной камере вследствие понижения рН выделяется на аноде углекислый газ вместе с кислородом. Электролиз ведется до концентрации щелочи в католите 100 г/л, после чего раствор щелочи выводится для получения соды (насыщением углекислым газом).

Автоклавные растворы должны быть более полно очищены от кремниевой кислоты (≤0,05 г/л), так как последняя выделяется в анолите и осаждается на мембранах. Для снижения содержания примеси кремниевой кислоты предложено добавлять в автоклавную пульпу окись алюминия, что приводит к образованию мало-растворимых алюмоциклатов [34].

При значительном содержании избыточной соды в растворе (100 г/л и более) можно применять комбинированную схему, по которой половина соды выделяется методом карбонизации в виде твердого бикарбоната, а остальная часть соды выводится методом электродиализа в виде раствора едкого натра [22].
Повышение температуры. Поскольку взаимодействие шеелита с растворами соды протекает в кинетической или (при недостаточной степени перемешивания) промежуточной области, повышение температуры должно сильно влиять на интенсификацию процесса. Кроме того, с повышением температуры константа равновесия реакции возрастает, что снижает минимально необходимый расход соды. Действительно, при повышении температуры выщелачивания шеелитовых и вольфрамитовых концентратов с 225 до 275—300°С скорость выщелачивания резко возрастает: продолжительность выщелачивания сокращается с 2 ч до 5—10 мин [35]. Однако это требует использования автоклавов, рассчитанных на давление 60—75 ат.

Воздействие на пульпу акустических колебаний [36, 37]. Одним из перспективных направлений интенсификации гидрометаллургических процессов является воздействие на пульпу поля ультразвуковых и звуковых колебаний. В настоящее время для обработки пульпы в промышленных объемах испытаны акустические установки с гидродинамическими преобразователями. К ним относятся ротационно-пульсационные аппараты (РПА). Они состоят из пары дисков с профрезерованными зубьями, из которых один неподвижен, а второй вращается вокруг их общей оси. Диски монтируются в корпусе насоса типа НКУ. При вращении ротора относительно статора происходит попеременное перекрывание пазов. Частицы жидкости, попадая из паза ротора в паз статора, теряют приобретенную ими ранее кинетическую энергию. Вследствие этого возникает импульс давления, передающий энергию дальше со скоростью звука. На рис. 6 приведена схема акустич
ческой установки для интенсификации процесса автоклавно-содового выщелачивания шеелитовых концентратов. Использование ротационно-пulsационного аппарата позволяет сократить расход соды и двое сократить продолжительность процесса.

Разложение вольфрамитовых концентратов растворами едкого натра

Способ разложения растворами едкого натра применяют на некоторых зарубежных заводах для переработки богатых стандартных вольфрамитовых концентратов [7, 9, 38].

При действии раствора едкого натра на вольфрамит протекает реакция обменного разложения:

\[
\text{MeWO}_4 (тв) + 2\text{NaOH}(раств) \rightleftharpoons \text{Na}_2\text{WO}_4 (раств) + \text{Me(OH)}_2 (тв),
\]

где \(\text{Me} - \text{Fe}^{2+}, \text{Mn}^{2+}\).

Для чистого минерала гиобнерита величина константы равновесия этой реакции

\[
K = \frac{[\text{Na}_2\text{WO}_4]}{[\text{NaOH}]}^2
\]

при температурах 90, 120 и 150°С составляет соответственно 0,686; 2,233 и 2,27 [39].

Полное разложение (98—99%) достигается при обработке тонкоизмельченного вольфрамитового концентрата 25—40%-ным раствором едкого натра при 110—120°С. Требуемый избыток щелочи составляет 50% и больше. Пропускание воздуха в раствор ускоряет процесс благодаря окислению гидроказисей железа и марганца до гидроокисей. Разложение ведут в стальных реакторах с мешалкой и паровой рубашкой (или обогреваемых газом), рассчитанных на единовременную загрузку от 1,5 до 5 т концентрата [9]. Продолжительность разложения 4—10 ч в зависимости от состава и крупности частиц концентрата, температуры и концентрации щелочи.

Расход щелочи можно снизить, если обработку проводить в обогреваемых шаровых мельницах, что объясняется истирающим воздействием шаров, снимающих с частиц минерала пленки гидроокисей. Расход NaOH для вольфрамитового концентратов составляет в этом случае 112%, а для гиобнеритового 140% от ТНК при температуре 120°С [39]. Типичная схема с разложением вольфрамитовых концентратов щелочью применяется на заводе фирмы «Викман ваймет лимитед» в Великобритании [7].

Разложение шеелита растворами фторидов натрия или аммония

В связи с низкими значениями константы равновесия реакции разложения шеелита растворами соды были проведены исследования по замене соды при автоклавном выщелачивании более эффективными реагентами. Обменные реакции
между шеелитом и солями, содержащими анионы кислот, образующих с кальцием малорастворимые соли, изучались советскими и зарубежными учеными [40–44]. Общая обменная реакция записывается в виде:

\[n\text{CaWO}_4 + 2A^{n-} = C_{n2}A_2 + n\text{WO}_4^{2-}, \quad (3.27) \]

где \(A \) — ионы \(F^-\), \(CO_3^{2-}\), \(Ca_2O_4^{2-}\), \(PO_4^{3-}\).

Было показано [1], что наиболее эффективными солями для разложения шеелита являются фториды и фосфаты. Опубликованные позднее результаты исследований кинетики взаимодействия шеелита с растворами карбоната, фторида и фосфата натрия подтвердили эти данные [44].

Скорость разложения шеелита фторидом и фторидом натрия (рис. 7) приближительно в три раза выше скорости разложения растворами соды. Еще выше скорость разложения смесью этих солей.

В работах, выполненных в Московском институте стали и сплавов, для разложения шеелита использовали фтористые соли [40–43, 60].

Разложение шеелитовых концентратов растворами фторида натрия в автоклавах [42, 43]. Вскрытие шеелитового концентратра фтористым натрием основано на обменной реакции

\[\text{CaWO}_4 + 2\text{NaF} \rightarrow \text{Na}_2\text{WO}_4 + \text{CaF}_2. \quad (3.28) \]

Значения констант равновесия реакции вольфрамата кальция с фтористым натрием при 225°С значительно выше, чем значения констант равновесия реакции с содой. При стехиометрическом расходе реагентов константа равновесия первой реакции равна 24,5, второй реакции 1,56. Соответственно ниже минимальный расход реагента, обеспечивающий полное разложение шеелитовых концентратов [2].

Натрий-фторидная технология разработана применительно к переработке туркмениских вольфрамо-молибденовых промышленных продуктов, содержащих, %: 45–50 \(\text{WO}_3 \); 4–6 \(\text{MoO}_3 \); 0,1–0,3 \(\text{Mo}_2\text{O}_5 \); 10–15 \(\text{CaF}_2 \); 7–8 \(\text{CaCO}_3 \). Промышленный продукт содержит молибденшепелит \(\text{Ca(W,Mo)_O}_4 \). Извлечение трехокиси вольфрама при разложении шеелита фторидом натрия достигает 99,6% при расходе фторида натрия, равном 180% от ТНК. Содержание \(F^- \) иона в отвальных кеках составляет 36–37%, т. е. кек содержит 74–76% \(\text{CaF}_2 \). Из общего количества \(\text{CaF}_2 \) часть приписывается на флюо-рят, содержащийся в концентрате.

Растворы, содержащие в среднем (г/л): 100 \(\text{WO}_3 \); 4–5 \(F^- \); 0,2–0,5 \(\text{SiO}_2 \) (pH = 10), можно перерабатывать по обычной схеме.

Вольфрамовый ангирид и паравольфрамат аммония, полученные по принятой технологии, по чистоте отвечают требованиям технических условий.

Преимущества натрий-фторидного автоклавного вскрытия шеелитовых концентратов по сравнению с содовым заключается в следующем: возрастает скорость разложения и уменьшается расход реагента; получаются более нейтральные растворы с меньшим содержанием примеси кремния; снижается расход кислоты при нейтрализации раствора и соответственно сокращается объем вредных сбросов.

1. Ракова Н. Н. Исследование новых путей получения молибдата и вольфрамата аммония из концентратов и полупродуктов. Автореф. канд. дисс. М., 1966.
хлористых солей (примерно вдвое); повышается комплексность использования сырья благодаря утилизации содержащегося в концентрах флюорита (до 12—15%). Кеки, содержащие 75—80% CaF₂, являются полезным побочным продуктом.

В работе [45] показана возможность резкого увеличения скорости разложения шеелита раствором NaF при повышении температуры с 225 до 250—300° С.

Применение для разложения шеелита фторида натрия как более доро- того по сравнению с содой реагента рентабельно при условии реализации кеков, содержащих фтористый кальций.

Использование фторида аммония при переработке шеелитовых концен- тратов [40, 47]. Поскольку конечным продуктом переработки шеелитовых концентратов является паравольфрамат аммония, существенное упрощение технологической схемы возможно при прямом извлечении вольфрама в аммиачный раствор непосредственно из шеелитовых концентратов или из осадков вольфрамата кальция (искусственного шеелита).

При использовании фторида амон- ния для вскрытия концентратов пара- вольфрамат аммония получают по са- мой короткой технологической схеме (рис. 8), исключающей многие опера- ции — переработку растворов вольфрамата натрия, очистку технической вольфрамовой кислоты и т. п.

Шеелитовые концентраты практически полно (98—99%) разлагаются раство- рами фторида аммония в аммиачной среде (10% NH₃) при температуре 200° С и 150—170° С при 100%-ном от THK расходе реагента.

Термодинамическая константа равноносия реакции

\[
\text{CaWO}_4 + 2\text{NH}_4\text{F} \rightarrow \text{(NH}_4)_2\text{WO}_4 + \text{CaF}_2
\]

(3.29)

\[
K_p = a_{\text{CaWO}_4}^2 / a_{\text{NH}_4\text{F}}^2
\]

вычисленная по термодинамическим данным (определение теплоты реакции в ка- лориметре), при 20° С равна 43,3 [46].

Концентрационная константа \(K_c = [\text{WO}_4^{2-}]/[\text{F}^-]^2 \) при 100%-ном от THK расходе реагента имеет следующие значения: 1,41 при 25° С; 1,97 при 50° С; 3,03 при 100° С; 3,52 при 150° С [46].

Представляет интерес применение фторида аммония для разложения вольфрамата кальция (искусственного шеелита).

В отличие от шеелитовых концентратов осадки искусственного шеелита разлагаются с достаточной скоростью и полнотой при температуре 90—100° С и расходе реагента 125% от THK (в случае двухстадийного противоточного выщелачивания). Следует отметить более высокую степень чистоты паравольфрамата, полученного аммонийно-фторидным методом, по примесям фосфора и мышьяка. Это обусловлено тем, что фосфат и арсенат кальция, содержащиеся в искусственном шеелите, в малой степени реагируют с фторидом аммония [47].
Недостаток аммионийно-фторидного способа разложения шеелита заключается в сложности регенерации вольфрама из аммиачных маточных растворов после выпарки и кристаллизации ПВА. Это объясняется высокой концентрацией в маточных растворах F- ионов (15—20 г/л), затрудняющих осаждение искусственного шеелита.

4. ХАРАКТЕРИСТИКА
СОЕДИНЕНИЙ ВОЛЬФРАМА,
ВЫДЕЛЯЕМЫХ ИЗ ВОЛЬФРАМАТНЫХ РАСТВОРОВ

Формы нахождения вольфрама (VI) в водных растворах

Химия водных растворов шестивалентного вольфрама сложна. Состав присутствующих ионов зависит от рН и концентрации растворов. В щелочных растворах (рН > 8) устойчивы нормальные вольфраматы, содержащие анионы WO₄²⁻. При подкислении растворов вольфрамат-ионы взаимодействуют с ионами H⁺. При этом происходит два типа превращений:

1) «отщепление» кислорода с одновременной полимеризацией и образованием мостиковых связей W—O—W (при достаточно высокой концентрации металла в растворе);
2) присоединение ионов водорода к полианионам.

В общем виде это можно представить уравнением:

\[m\text{WO}_4^{2-} + n\text{H}^+ \rightarrow \text{HW} \left(\frac{2m-n}{4m-n-l} \right)^{2m-n-l} + \frac{n-l}{2} \text{H}_2\text{O}. \quad (3.30) \]

Относительный заряд анионов \(P = (2m - n)/m \) определяется степенью протонизации: \(P = 2 - Z \), где \(Z = n/m \) — число протонов, приходящихся на один атом металла. Степень полимеризации не изменяется непрерывно по мере подкисления растворов. Для вольфрама характерны полианионы с полимерным числом 6 и 12 (преобладает в концентрированных растворах).

В соответствии с этим в интервале рН = 6–4 в растворе присутствуют гексавольфрамат \(\text{HW}_6\text{O}_{21}^- \) (паравольфрамат A) и додецовольфрамат \(\text{W}_{12}\text{O}_{41}^- \) (паравольфрамат Z) и его протонизированные формы \(\text{HW}_{12}\text{O}_{41}^- \), \(\text{H}_2\text{W}_{12}\text{O}_{41}^- \) и др. При рН < 4 образуются метавольфрамат-ионы \(\text{W}_{12}\text{O}_{39}^- \), \(\text{HW}_{12}\text{O}_{39}^- \) и др.

Превращения, которые происходят при этом, описываются схемой:

Дальнейшее подкисление до рН ≈ 2 должно сопровождаться увеличением степени протонизации до \(Z = 2 \) и образованием ней-
тральных молекул, например $H_{10}W_{12}O_{41}$ и др. Подобные крупные нейтральные молекулы плохо удерживаются в водных растворах, поэтому при pH < 2 вольфрам практически полностью осаждается в виде вольфрамовой кислоты H_2WO_4.

В свободном состоянии изополивольфрамовые кислоты не выделены (за исключением метавольфрамовой кислоты $H_6W_{12}O_{39} \times \times 27H_2O$), но их соли — изополивольфраматы — выделяют из растворов, в частности в технологии переработки вольфрамовых концентратов.

В сильно разбавленных слабокислых растворах ($<0,01$ моль/л WO_3) присутствуют только мономерные формы: WO_3^2 HWO_4^- и H_2WO_4. Соотношение между ними в зависимости от pH приведено на рис. 9 [49]. К. Б. Яндимировский с сотрудниками определил первую и вторую константы диссоциации вольфрамовой кислоты при $25^\circ C$ [52, 53]: $K_1 = 6,4 \cdot 10^{-3}$; $K_2 = 2,2 \cdot 10^{-4}$.

В сильнокислых разбавленных растворах (pH < 1) образуются вольфрамил-ионы WO_3^2 и ряд гидроксокомплексов: WO_3OH^+, $WO_3(OH)_2$, $WO_3(OH)_3^-$. Их распределение в зависимости от pH приведено на рис. 10 [50].

Вольфрамовая кислота

Различают две формы вольфрамовой кислоты — желтую, осаждающуюся кислотами из нагретых растворов вольфраматов, и белую коллоидную, выделяющуюся на холоду. Желтая кислота соответствует формуле H_2WO_4. Белая кислота представляет собой гидратированную трехокись вольфрама, на кривой ее обезвоживания нет перегибов или площадок (рис. 11). При температуре выше
180° С желтая кислота отщепляет воду с образованием трехокиси вольфрама. Белая кислота переходит в желтую при длительном кипячении. Вольфрамовая кислота растворяется в растворах щелочей, соды и аммиака с образованием нормальных вольфраматов — солей типа Me₂WO₄.

Важнейшие вольфраматы

Нормальный вольфрамат натрия Na₂WO₄ — одна из технически важных солей вольфрамовой кислоты. Из водных растворов при температуре выше 6° С кристаллизуется соль с двумя молекулами воды; при низких температурах устойчива десятиводная соль. Температура плавления безводного Na₂WO₄ равна 696° С, плотность 4,18 г/см³.

Растворимость вольфрамата натрия (безводной соли) в воде приведена ниже:

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>−5</th>
<th>0</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Растворимость, %</td>
<td>30,6</td>
<td>35,4</td>
<td>41,0</td>
<td>41,8</td>
<td>41,9</td>
<td>42,2</td>
<td>43,8</td>
<td>47,4</td>
<td>49,2</td>
</tr>
</tbody>
</table>

\[
\text{Na}_2\text{WO}_4 \cdot 10\text{H}_2\text{O} \quad \text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O}
\]

Зависимость растворимости вольфрамата натрия в воде при температурах 100—350° С приведена в работе [51]. Минимум растворимости при температуре около 150° С связан с переходом двухводного кристаллогидрата в безводную соль.

Паравольфрамат аммония (NH₄)₁₀W₁₂O₄₁·nH₂O может быть получен при нейтрализации или выпаривании раствора нормального вольфрамата аммония (NH₄)₂WO₄*.

\[12(NH₄)₂WO₄ → 5(NH₄)₂·12WO₃ + 14NH₃ + 7H₂O. \quad (3.32)\]

Из холодных растворов (ниже 50° С) выпадают игольчатые кристаллы с 11 молекулами воды, из нагретых растворов — пластинчатые кристаллы с пятью молекулами воды. Соль мало растворима в воде, и ее растворимость сильно зависит от температуры:

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>17</th>
<th>29</th>
<th>45</th>
<th>49</th>
<th>52</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Растворимость безводной соли, %</td>
<td>1,064</td>
<td>2,014</td>
<td>3,467</td>
<td>4,341</td>
<td>3,280</td>
<td>7,971</td>
</tr>
</tbody>
</table>

при \(n = 11 \ \text{H}_2\text{O} \)

при \(n = 5 \ \text{H}_2\text{O} \)

При температурах 400—500° С паравольфрамат аммония быстро разлагается с образованием трехокиси вольфрама.

Вольфрамат кальция CaWO₄ — белый мелкокристиаллический порошок, мало растворимый в воде. По данным [69], растворимость CaWO₄ в воде при 20° С равна 0,0133 г/л, при 90° С 0,0023 г/л.

Плотность 5,98 г/см³, температура плавления 1580° С. Вольфрамат кальция может быть получен осаждением хлористым ка-

* Нормальный вольфрамат аммония существует только в водном растворе.
льцем или гидроокисью кальция из растворов щелочных вольфраматов или непосредственным взаимодействием в твердом состоянии окиси кальция с \(\text{WO}_3 \) при 600—800° С. Соль разлагается кислотами с образованием осадка вольфрамовой кислоты.

Другие вольфраматы. Нормальные вольфраматы всех щелочноzemельных металлов (кроме магния), вольфраматы Fe, Mn, Cu, Co, Ni, Zn, Pb, а также редкоземельных металлов мало растворимы в воде. Они могут быть осаждены из водных растворов щелочных вольфраматов или получены нагреванием стехиометрической смеси окисла металла с \(\text{WO}_3 \).

Метавольфрамовая кислота и ее соли. Метавольфрамовая кислота \(\text{H}_6\text{W}_{12}\text{O}_{39} \cdot 27\text{H}_2\text{O} \) в отличие от вольфрамовой кислоты хорошо растворима в воде, так же как и большинство ее солей, в том числе соли кальция, железа, меди и др. Метавольфраматы устойчивы в слабокислых растворах (pH \(\approx 4 \)). При добавлении щелочи и кипячении раствора метавольфраматы разрушаются с образованием нормальных солей.

Гетерополикислоты и их соли [48, 70]. При подкислении растворов вольфраматов щелочных металлов, содержащих соли кремниевой, фосфорной, мышьяковой и борной кислот, образуются комплексные анионы гетерополикислот. По современным представлениям анионы гетерополикислот имеют состав:

\[
[X^{n+}(\text{W}_3\text{O}_{10})_4]^{(8-n)-}, \quad \text{где} \quad X^{n+} = \text{Si}^{4+}, \text{As}^{5+}, \text{P}^{5+}, \text{B}^{3+}.
\]

Известны, например, следующие гетерополикислоты: вольфраматокремниевая \(\text{H}_4[\text{Si}(\text{W}_3\text{O}_{10})_4] \); вольфраматофосфорная \(\text{H}_3[\text{P}(\text{W}_3\text{O}_{10})_4] \), вольфраматомышьяковая \(\text{H}_3[\text{As}(\text{W}_3\text{O}_{10})_4] \); вольфраматоборная \(\text{H}_5[\text{B}(\text{W}_3\text{O}_{10})_4] \). В гетерополикислотах вокруг центрального атома (Si, P и др.) расположены в вершинах тетраэдра четыре атома кислорода, каждый из которых является общей вершиной трех октаэдров \(\text{WO}_6 \). Каждый из этих трех октаэдров имеет с двумя соседними общее ребро. Отсюда следует, что на каждую группу из трех октаэдров \(\text{WO}_6 \) приходится 10 атомов кислорода, и она имеет состав \(\text{W}_3\text{O}_{10} \), а общий состав четырех таких групп \((\text{W}_3\text{O}_{10})_4 \). Известны соли гетерополикислот, например \(\text{K}_4[\text{Si}(\text{W}_3\text{O}_{10})_4] \cdot 18\text{H}_2\text{O} \), и ряд других. В щелочной среде гетерополисоединения разлагаются.

В табл. 8 приведены термодинамические характеристики некоторых соединений вольфрама.

5. СХЕМЫ ПЕРЕРАБОТКИ РАСТВОРОВ ВОЛЬФРАМАТА НАТРИЯ

Растворы вольфрамата натрия, содержащие 80—150 г/л \(\text{WO}_3 \), с целью получения трехокиси вольфрама требуемой чистоты до настоящего времени перерабатывают по традиционной схеме, показанной на рис. 12. Схема включает: очистку от примесей (Si, P, As, F, Mo); осаждение искусственного шеелита с последующим
Таблица 8

Термодинамические характеристики некоторых соединений вольфрама
(заимствовано из работы Г. Ф. Ивановой [49])

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Состояние</th>
<th>$\Delta H_{298}^\circ\text{ккал/моль}$</th>
<th>$\Delta G_{298}^\circ\text{ккал/моль}$</th>
<th>$S_{298}^\circ\text{кал/(моль-град)}$</th>
<th>$C_p^{298}\text{кал/(моль-град)}$</th>
<th>Коэффициенты уравнения $C_p = a + bT$, кал/моль</th>
<th>Температурный интервал для коэфффициентов a и b, К</th>
<th>Литературный источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO₃</td>
<td>К</td>
<td>201,46±0,2</td>
<td>182,63</td>
<td>18,15±0,12</td>
<td>—</td>
<td>17,48</td>
<td>6,79</td>
<td>298—1550</td>
</tr>
<tr>
<td>H₂WO₄</td>
<td>К</td>
<td>270,5±0,4</td>
<td>34,6±6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H₂WO₄</td>
<td>П-р</td>
<td>250,0</td>
<td>230,45</td>
<td>71,5</td>
<td>—</td>
<td>29,4</td>
<td>108,0</td>
<td>—</td>
</tr>
<tr>
<td>HWO₄⁻</td>
<td>П-р</td>
<td>252,66</td>
<td>227,45</td>
<td>52,5</td>
<td>32,33</td>
<td>—</td>
<td>98,6</td>
<td>—</td>
</tr>
<tr>
<td>WO₂⁻</td>
<td>П-р</td>
<td>256,89±0,4</td>
<td>222,5</td>
<td>22,8±3</td>
<td>—32,89±3</td>
<td>—281,74</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Na₃WO₄</td>
<td>К</td>
<td>369,88±0,3</td>
<td>342,51</td>
<td>38,5±0,3</td>
<td>33,4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CaWO₄</td>
<td>К</td>
<td>392,2±0,8</td>
<td>366,7</td>
<td>30,2±0,2</td>
<td>26,81</td>
<td>26,48</td>
<td>10,045</td>
<td>298—1073</td>
</tr>
<tr>
<td>MnWO₄</td>
<td>К</td>
<td>312±0,8</td>
<td>287,8</td>
<td>32,3±3</td>
<td>26,37</td>
<td>26,0</td>
<td>12,26</td>
<td>298—1073</td>
</tr>
<tr>
<td>FeWO₄</td>
<td>К</td>
<td>283,9±2,0</td>
<td>259,8</td>
<td>31,5±0,4</td>
<td>27,39</td>
<td>26,10</td>
<td>12,6</td>
<td>—</td>
</tr>
<tr>
<td>MgWO₄</td>
<td>К</td>
<td>366,8±2,0</td>
<td>340,2</td>
<td>24,2±0,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NiWO₄</td>
<td>К</td>
<td>271,0±0,8</td>
<td>245,8</td>
<td>29,5±3</td>
<td>—</td>
<td>24,38</td>
<td>15,71</td>
<td>298—986</td>
</tr>
<tr>
<td>CuWO₄</td>
<td>К</td>
<td>247 *</td>
<td>31,5±3</td>
<td>—</td>
<td>—</td>
<td>27,08</td>
<td>9,78</td>
<td>248—1125</td>
</tr>
<tr>
<td>ZnWO₄</td>
<td>К</td>
<td>296 *</td>
<td>31,1±3</td>
<td>—</td>
<td>—</td>
<td>27,08</td>
<td>9,78</td>
<td>248—1125</td>
</tr>
<tr>
<td>PbWO₄</td>
<td>К</td>
<td>268,1±1,5</td>
<td>243,9</td>
<td>40,2±0,5</td>
<td>28,63</td>
<td>28,50</td>
<td>9,42</td>
<td>298—1100</td>
</tr>
</tbody>
</table>

* Приближенная оценка.
Рис. 12. Традиционная схема переработки растворов вольфрамата натрия с получением чистых соединений вольфрама
его разложением кислотами и получением осадка технической вольфрамовой кислоты; растворение вольфрамовой кислоты в растворе аммиака с последующим выделением из растворов паравольфрамата амmonия методом выпарки или нейтрализации.

Основной недостаток этой схемы — ее многостадийность, осуществление большинства переделов в периодическом режиме, длительность ряда операций. В связи с этим разработаны и уже применяются на некоторых предприятиях схемы, в которых после очистки растворов от примесей осуществляют конверсию раствора Na₂WO₄ в раствор (NH₄)₂WO₄ методом экстракции или ионного обмена. Это приводит к существенному сокращению схемы, так как исключаются операции, связанные с получением вольфрамовой кислоты. Ниже рассмотрены основные переделы традиционной схемы и новые варианты технологии.

Очистка растворов Na₂WO₄ от примесей

Растворы вольфрамата обычно содержат примеси кремния, фосфора, мышьяка, молибдена, серы, иногда фтора в форме натриевых солей соответствующих кислот. Очистка от примесей необходима не только для обеспечения необходимой чистоты получаемой трехокиси вольфрама. Некоторые примеси, например соединения кремния, фосфора и мышьяка, затрудняют отстаивание осадков вольфрамовой кислоты, а также могут вызывать потери вольфрама на операциях получения вольфрамовой кислоты, что объясняется образованием в кислых растворах гетерополивольфрамовых кислот и их солей.

Очистка от кремния. Растворы Na₂WO₄ обычно содержат 1—3 г/л SiO₂. Если принять среднюю концентрацию WO₃ в растворах 100 г/л, отношение SiO₂/WO₃ в них примерно равно 1—3%. Для обеспечения нормируемого техническими условиями содержания примеси SiO₂ в вольфрамовом ангидриде (не более 0,05% и 0,1% в зависимости от назначения) необходимо снизить отношение SiO₂/WO₃ в растворе до 0,1—0,2% (т. е. примерно до 0,1—0,2 г/л.)

Наиболее распространенный способ очистки от кремния основан на гидролитическом осаждении кремниевой кислоты при нейтрализации раствора до pH = 8—9.

\[\text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{SiO}_3 + 2\text{NaOH}. \]

(3.33)

Для нейтрализации применяют соляную кислоту, которую вводят в нагретый до кипения раствор вольфрамата натрия медленно, токами стружками при перемешивании. Это обеспечивает исключение местных перекислений раствора, которые могут вызывать образование кремне- и метавольфраматов, понижающих извлечение вольфрама из растворов на последующих операциях [58]. Метод очистки нейтрализацией растворов обеспечивает при соблюдении оптимальных режимов снижение концентрации SiO₂ в растворах до 0,1—0,05 г/л [5].
Применительно к автоклавно-содовому способу разложения шеелитовых концентратов авторы работы [59] показали, что добавление в автоклавную пульпу окиси алюминия (до 1,25% от массы концентратра) обеспечивает получение растворов, не требующих очистки от кремния (содержание SiO₂ не выше 0,1—0,2 г/л). Действие добавки Al₂O₃ объясняется образованием малорастворимого силиката Na₂O·Al₂O₃·2SiO₂·nH₂O. Для этих же целей можно использовать добавки в автоклавную пульпу окиси магния (~2—6% от массы концентратра), связывающей кремний в малорастворимый силикат 2MgO·SiO₂. При этом одновременно существенно снижается содержание мышьяка в растворах.

Очистка от фосфора и мышьяка. Производственные растворы содержат в зависимости от состава перерабатываемого сырья от 0,5 до 4 г/л фосфора и мышьяка. Более высокие содержания мышьяка характерны для растворов, полученных после разложения вольфрамитовых концентратов. Следует при этом учитывать, что мышьяк может присутствовать в трехвалентной и пятивалентной формах, т. е. в составе анионов AsO₃³⁻ и AsO₅³⁻. В производственной практике для очистки растворов от фосфора и мышьяка используют осаждение малорастворимых фосфата и арсената магния Mg₃(PO₄)₂ и Mg₃(AsO₄)₂ и аммонийно-магниевых фосфата и арсената NH₄MgPO₄ и NH₄MgAsO₄. Если в растворах присутствует трехвалентный мышьяк, необходимо предварительно его окислить гипохлоритом натрия или перекисью водорода [61].

В растворы добавляется перекись водорода (H₂O₂/As³⁺ = 2), а затем MgCl₂ в соотношении MgCl₂/As = 6. В этих условиях концентрация мышьяка в растворах снижается с 2,5—3,0 до 0,06—0,08 г/л. Объемистые осадки содержат, помимо арсената магния, карбонаты и основные карбонаты магния. Они содержат 0,5—4% As и 10—20% WO₃ и являются оборотными продуктами, возвращаемыми на автоклавное выщелачивание вместе с концентратом [62]. Более глубокая очистка от фосфора и мышьяка достигается при осаждении аммонийно-магниевых солей. Этот способ очистки преимущественно используется на отечественных предприятиях [5, 6]. Способ основан на следующих реакциях осаждения:

\[
Na₂HPO₄ + MgCl₂ + NH₄OH = Mg(NH₄)PO₄ + 2NaCl + H₂O; \quad (3.34)
\]

\[
Na₂HASO₄ + MgCl₂ + NH₄OH = Mg(NH₄)AsO₄ + 2NaCl + H₂O. \quad (3.35)
\]

Аммонийно-магниевые соли могут гидролизоваться с образованием более растворимых кислых фосфатов и арсенатов:

\[
Mg(NH₄)PO₄ + H₂O ⇌ MgHPO₄ + NH₄OH. \quad (3.36)
\]
Как видно из написанной реакции, для исключения гидролиза в растворе должен быть некоторый избыток аммиака. Кроме того, необходимо присутствие хлористого аммония, который предотвращает выпадение гидрокиси магния, так как понижает концентрацию ионов OH⁻ в растворе до такой степени, что не достигается величина произведения растворимости Mg(OH)₂.

Очистка от фтора. Если в исходном сырье присутствует флюорит, что характерно для шеелитовых руд, растворы после автоклавно-содового разложения концентрата содержат ионы F⁻. Примечательно, что концентрация F⁻-ионов находится в пределах 3—5 г/л при колебании содержания флюорита в концентрациях от 4 до 26%.

В щелочных растворах фтор, вероятно, присутствует в виде свободных ионов, однако в слабокислых растворах (pH = 5÷3) образуются прочные оксофторокомплексы: [WO₄F₄]²⁻, [WO₃F₂]²⁻, HWO₃F [48, 63, 64].

Влияние присутствия фтора в вольфраматных растворах на последующие технологические операции и качество продукции исследовал И. А. Харьяковский [65, 66]. Очистка растворов от фтора необходима вследствие его отрицательного влияния на избирательное осаждение молибдена в виде MoS₃. Присутствие фтора затрудняет также экстракционное извлечение вольфрама аминами из растворов [67].

Очистка от примесей фтора осуществляется осаждением фтористого магния из нейтрального раствора, в который добавляют MgCl₂. Концентрация ионов F⁻ в результате осаждения MgF₂ снижается с 5 г/л до 0,3—0,4 г/л. Более глубокая очистка от фтора оказалась нерациональной. При последующих операциях осаждения искусственного шеелита и его разложения соляной кислотой примесь ионов фтора способствует снижению содержания SiO₂ в вольфрамовой кислоте (вследствие связывания кремния в H₂SiF₆).

Очистка от молибдена. Растворы вольфрамата натрия необходимо очищать от молибдена в том случае, если его содержание превышает 0,1 г/л *. При содержании молибдена 8—10 г/л (например, при переработке тьрынуаузских концентратов) выделение молибдена приобретает особое значение, так как имеет целью получение молибденового химического концентриата. Единственный используемый в промышленной практике способ отделения молибдена от вольфрама — осаждение трисульфида молибдена MoS₃.

Способ основан на различии условий образования и константы устойчивости сульфосолей молибдена и вольфрама. Известно, что при добавлении в растворы вольфрамата или молибдата

* При меньшем содержании молибдена получение кондиционного продукта (с содержанием молибдена ≤0,02%) обеспечивается отделением его на стадии получения вольфрамовой кислоты и ее очистки аммиачным способом.
натрия сернистого натрия образуются сульфосоли Na₂RS₄ или оксисульфосоли Na₂RS₆O₂ (где R — Mo или W, x + y = 4):

$$\text{Na}_2\text{RO}_4 + 4\text{NaHS} \rightleftharpoons \text{Na}_2\text{RS}_4 + 4\text{NaOH}. \quad (3.37)$$

Константа равновесия реакции

$$K = \frac{[\text{Na}_2\text{RS}_4][\text{NaOH}]^4}{[\text{Na}_2\text{RO}_4][\text{NaHS}]^4}. \quad (3.38)$$

Данные о константах устойчивости сульфосоединений вольфрама и молибдена отсутствуют. Однако, несомненно, что константа равновесия реакции (3.37) для Na₂MoO₄ значительно больше, чем для Na₂WO₄ ($K_{\text{Mo}} >> K_{\text{W}}$). Поэтому, если в раствор добавлено количество Na₂S, достаточное лишь для взаимодействия с Na₂MoO₄ (с небольшим избыtkом), то преимущественно образуется сульфосоль молибдена Na₂MoS₄ (или Na₂MoS₆O₂). При последующем подкислении раствора до pH = 2,5—3 сульфосоль разрушается с выделением малорастворимого трисульфида молибдена:

$$\text{Na}_2\text{MoS}_4 + 2\text{HCl} \rightarrow \text{MoS}_3 + 2\text{NaCl} + \text{H}_2\text{S}. \quad (3.39)$$

Оксисульфосоли разлагаются с выделением оксисульфидов (например, MoS₂O и др.). Вместе с молибденом соединяется некоторое количество трисульфида (окситрисульфида) вольфрама, зависящее от избытка осадителя. Установлено, что больший избыток осадителя [Na₂S, (NH₄)₂S] требуется в присутствии ионов фтора, образующих прочные оксоанионы [MoO₃F]⁻ и [MoO₂F₄]²⁻, константы нестойкости которых равны 3,28·10⁻⁵ и 2,6·10⁻¹¹ соответственно [68]. Это приводит к более высокой степени осаждения вольфрама. Если F⁻-ионы отсутствуют, полное осаждение молибдена достигается даже при добавлении 82—83% осадителя от THK, так как после подкисления выделяется оксисульфид MoO₃S₃—x [65].

При условиях очистки растворов от ионов фтора до их содержания 0,3—0,4 г/л вместе с молибденом осаждается небольшое количество вольфрама. Так, при осаждении молибдена из растворов, содержащих 8—10 г/л Mo и 80—120 г/л WO₃, сульфидные осадки содержат 5—10% WO₃. Путем растворения сульфидного осадка в растворе соды и повторного осаждения трисульфида молибдена можно получить молибденовый продукт с содержанием WO₃ не более 2% при потере 0,3—0,5% W от исходного его количества.

Высушенные осадки трисульфида молибдена обладают способностью самовозгораться. Частичный окислительный обжиг при температуре 450—500°C до содержания серы 6—10% устраняет это явление. Получаемый молибденовый химический концентрат содержит 50—52% Mo и 2—2,5% WO₃.
Получение вольфрамовой кислоты из растворов вольфрамата натрия

В производственной практике применяют два способа получения вольфрамовой кислоты.
1. Непосредственное выделение вольфрамовой кислоты.
2. Осаждение вольфрамата кальция с его последующим разложением кислотами.

Непосредственное осаждение вольфрамовой кислоты кажется более простым. Однако оно связано с рядом трудностей, обусловленных образованием дисперсных осадков, склонных к коллоидообразованию. Этот способ иногда используют для получения мелкозернистой вольфрамовой кислоты. Второй способ позволяет получить более грубые, легче отмываемые осадки вольфрамовой кислоты. Кроме того, при осаждении вольфрамата кальция отделяется большая часть ионов натрия. При значительном остаточном содержании ионов натрия в осадке вольфрамовой кислоты (что имеет место при прямом осаждении вольфрамовой кислоты) ионы натрия неполно отделяются при последующих операциях получения паравольфрамата аммония, тогда как примеси ионов кальция остаются в осадке в виде CaWO₄ при растворении вольфрамовой кислоты в аммиачной воде. Эти преимущества объясняют более широкое применение второго способа в производственной практике.

Осаждение вольфрамовой кислоты. Для осаждения вольфрамовой кислоты из раствора вольфрамата натрия обычно используют соляную кислоту. Характер получаемого осадка зависит от концентрации исходного раствора, температуры, а также способа осаждения. Коллоидные осадки белой вольфрамовой кислоты образуются при осаждении из холодных разбавленных растворов. Менее дисперсные, сравнительно легко промываемые осадки желтой вольфрамовой кислоты выпадают при вливании нагретого концентрированного раствора вольфрамата натрия в кипящую соляную кислоту. Скорость вливания раствора в соляную кислоту влияет на крупность осадка. Это объясняется тем, что при разных скоростях слияния образуется различное число центров кристаллизации, которое при данной скорости роста кристаллов определяет величину частиц осадка. Чистота и зернистость кислоты зависят от конечной кислотности раствора, которую поддерживают в пределах 7—12%.

При периодическом режиме осаждения трудно обеспечить стандартность характеристик конечного продукта — вольфрамовой кислоты, так как концентрация реагирующих веществ (HCl и Na₂WO₄) по мере осаждения непрерывно изменяется. Это устраняется при осуществлении непрерывного процесса осаждения. Вариант непрерывного осаждения описан Смителлсом [9].

Осажденная вольфрамовая кислота должна быть тщательно отмыта от хлористого натрия и других растворимых примесей.
Отфильтрованную кислоту дополнительно обезвоживают на центрифуге, получая влажный кек, содержащий 55—60% WO₃. Общее извлечение из раствора при осаждении H₂WO₄ составляет 98—99%.

Осаждение вольфрамата кальция и его разложение кислотами. Осаждение обычно осуществляют хлористым кальцием, водный раствор которого вливают в раствор вольфрамата натрия. При этом выпадают кристаллический легко отстаивающийся осадок, в маточном растворе остаются ионы натрия, что обеспечивает низкое содержание примеси натрия в получаемой кислоте.

Полнота осаждения вольфрамата кальция зависит от щелочности и концентрации раствора вольфрамата натрия. Рекомендуется вести осаждение из нагретых до кипения растворов (100—130 г/дм³ WO₃) при содержании щелочки 0,3—0,7%. При щелочности раствора ниже 0,3% осаждение неполное, а при щелочности выше 0,7% выпадает медленно оседающий объемистый осадок, захватывающий примеси. Из раствора осаждается 99—99,5% W, маточные растворы содержат 0,05—0,07 г/дм³ WO₃.

Вместе с вольфраматом кальция выпадают и другие мало растворимые кальциевые соли: CaCO₃, CaF₂, CaSiO₃, Ca₃(PO₄)₂, CaMoO₄, CaSO₄. Предварительная очистка значительно снижает содержание кремния, фосфора и молибдена в осадке CaWO₄. Содержание сульфата кальция в осадке зависит от первоначальной концентрации ионов SO₄²⁻ в растворе и избытка осадителя — хлористого кальция. Значительная растворимость CaSO₄ в воде (2 г/дм³ при 20°C) позволяет в случае необходимости отмыть последний горячей водой.

Отмытый осадок в виде пасты или пульпы поступает на разложение соляной кислотой при нагревании. При разложении поддерживают высокую конечную кислотность пульпы (90—180 г/дм³ HCl), что обеспечивает отделение от осадка вольфрамовой кислоты примесей фосфора, мышьяка и отчасти молибдена (молибденовая кислота растворяется в соляной кислоте). В нагретую до 60—65°C соляную кислоту при постоянном перемешивании загружают пасту или водную пульпу вольфрамата кальция. В отработанной кислоте содержится обычно 0,3—0,5 г/дм³ WO₃, который регенерируют осаждением известно вольфрамата кальция.

Промытая, отфильтрованная и высушенная кислота обычно содержит 0,2—0,3% примесей. Общее извлечение составляет 98—99%.

На одном из предприятий в СССР при переработке растворов вольфрамата натрия вместо соляной кислоты применяли азотную кислоту для нейтрализации растворов и разложения осадков CaWO₄, а осаждение последнего осуществляют Ca(NO₃)₂. Это позволяло резко сократить количество вредных сбросов хлористых солей (NaCl, CaCl₂), так как азотнокислые маточные растворы поступают в цех регенерации, где получают азотнокислые соли, используемые в качестве удобрений.
При небольших содержаниях молибдена в растворах Na₂WO₄ (~ 0,1—0,5 г/л) в присутствии ионов S²⁻ хлористым кальцием не осаждается CaMoO₄, тогда как CaWO₄ осаждается. При соответствующей дозировке осадителя выделившийся искусственный шеллит содержит < 0,01% Mo [75]. Этот метод используется на одном из предприятий в СССР для отделения небольших количеств молибдена от вольфрама.

При условии достаточно полной очистки растворов вольфрамата натрия от примесей вольфрамовая кислота, полученная в результате разложения кислотами осадков вольфрамата кальция, удовлетворяет по чистоте современным требованиям производства твердых сплавов. Для получения вольфрама вольфрамовая кислота проходит дополнительную очистку.

Применение экстракционных процессов в технологии переработки растворов вольфрамата натрия

Получение паравольфрамата аммония методом экстракции. Существенное упрощение многоступенчатой схемы переработки растворов вольфрамата натрия достигается при извлечении вольфрама методом экстракции с последующей реэкстракцией растворами аммиака и выделением из аммиачных растворов паравольфрамата аммония. Поскольку в широком интервале рН (от 7,5 до 2) вольфрам находится в растворах в составе полимерных анионов (см. с. 50), для экстракции могут быть использованы анионобменные экстрагенты — амины (триоктиламин TOA и др.) и соли четвертичных аммониевых оснований (ЧАО). Наиболее высокие показатели экстракции вольфрама для экстрагентов обоих типов лежат в интервале рН = 2÷4, однако соли ЧАО хорошо экстрагируют вольфрам и при рН = 6÷8 [71—73]. Характер зависимости коэффициента распределения от рН при экстракции вольфрама солями аминов или солями ЧАО иллюстрирует рис. 13 [74]. Для извлечения вольфрама из нейтральных или слабощелочных растворов могут быть использованы только четвертичные аммониевые соединения, так как при рН > 5÷6 соли аминов гидролизуются. В области рН > 8 вольфрам присутствует только в форме WO₄³⁻. Поэтому коэффициенты распределения зависят только от концентрации конкурирующих анионов. При введении в раствор с целью повышения рН ёдкого натра конкуренция анионов ON⁻ незначительна, коэффициент распределения практически не зависит от рН (см. рис. 13, кривая 2); если же водный раствор подщелачивается содой, то вследствие сильного конкурирующего влияния анионов HCO₃⁻ коэффициенты распределения вольфрама уменьшаются при повышении рН [71]. В интервале рН = 2÷5 понижение рН сопровождается увеличением коэффициентов распределения вольфрама вследствие образования полимерных анионов и уменьшения их заряда (в результате протонизации аниона).
Состав экстрагируемых соединений вольфрама в интервале pH = 2—6 зависит от концентрации вольфрама и pH раствора. По данным работы [73], при низкой концентрации металла (1—2 г/л) экстракция TOA протекает с образованием соединения (NR₃H)HWO₄, а при высокой концентрации металла (50—100 г/л) образуется соединение с отношением TOA : W = 1 : 3. В этом случае экстракцию при pH = 3—4 можно описать уравнением

\[
4 (R_3NH) HSO_4 (o) + 2H^+ + W_{12}O_{39}^- (b) \rightleftharpoons (R_3NH)_4 H_2W_{12}O_{39} (o) + 4HSO_4^- (b).
\]

Из слабокислых растворов вольфрам экстрагируется, как правило, значительно лучше молибдена. Однако полное разделение этих металлов экстракцией солями аминов или ЧАО невозможно вследствие образования в смешанных растворах полианионов, содержащих одновременно оба металла [72]

В США для экстракционного извлечения вольфрама из растворов вольфрамата натрия используют третичный амин — Аламин 336 и четвертичное аммониевое основание — Аликват 336 [71]:

АЛАМИН 336

АЛИКВАТ 336

где R — смесь углеводородных радикалов C₈—C₁₀ с преобладанием C₈.

Щелочные растворы вольфрамата натрия, полученные при вскрытии концентратов, нейтрализуют кислотой, что связано со значительными затратами реагентов. Следует отметить, что Аликват 336 можно использовать до pH = 5,5, тогда как Аламин 336 уже при pH выше 2,5—3 мало эффективен.

Поступающие на экстракцию растворы должны быть очищены от примесей молибдена, кремния, фосфора и мышьяка. Для предотвращения экстракции даже небольших остаточных количеств кремния и фосфора в раствор вводят F⁻-ион (в виде фтористых солей) для связывания кремния и фосфора в незэкстрагируемые комплексы H₃SiF₆ и HPF₆ [71].

Серьезные затруднения при осуществлении процесса связаны с выделением твердой фазы при рекстракции вольфрама из органической фазы растворами аммиака. Осадок представляет собой
загрязненный органическими примесями паравольфрамат аммония. Часть осадка диспергирована в органической фазе. В связи с этим рекэкстрацией предложено проводить при повышенной температуре (50° С) и таком отношении объемов V₀ : Vᵩ, при котором получаются относительно разбавленные амиачные растворы (50 г/л WO₃)¹. Это вызывает увеличение затрат на выпарку растворов для выделения паравольфрамата аммония; подогрев до 50° С нежелателен из-за повышения пожарной опасности.

Преимущества экстракционной переработки растворов вольфрамата натрия очевидны: сокращается число операций технологической схемы получения паравольфрамата аммония (исключаются пределы осаждения искусственного шеелита, разложения его кислотами, операции промывки вольфрамовой кислоты и переработки промывных вод и кислых маточных растворов и т. д.); создается возможность осуществления непрерывного процесса получения растворов вольфрамата аммония из раствора вольфрамата натрия; значительно сокращаются производственные площади; сокращаются затраты на реагенты.

В США процесс экстракционного извлечения вольфрама освоен на предприятии фирмы «Сильваниа электрик продуктов инк» при переработке вольфрамовых концентратов и промпродуктов различного типа [71, 77, 78].

На рис. 14 приведена схема переработки шеелитовых промпродуктов (23% WO₃) с использованием экстракции вольфрама из растворов автоклавно-содового выщелачивания ². Концентрат выщелачивали раствором соды в автоклаве при температуре 200° С в течение 2 ч.

После охлаждения, фильтрации и промывки полученный раствор содержал 3,5% WO₃ и 0,05% Mo, отвальные хвосты содержали 0,55% WO₃. После очистки от молибдена и установления pH раствора ~2,5 (добавлением серной кислоты) отфильтрованный раствор, содержащий 3,38% WO₃; 0,003% SiO₂ и 0,001% P₂O₅, поступал на экстракцию в одноступенчатый смеситель-отстойник. Состав экстрагента: на 1 массовую часть аммика (Аламина 336) приходится 1,03 массовых частей трибутилфосфата и 97 массовых частей керосина. Температура водной фазы 35° С, органической 49° С. В рафинате содержится 0,02% WO₃. Органическая фаза насыщалась до 25 г/л WO₃, после чего ее промывали водой в двухступенчатом смесителе-отстойнике. Рекэкстрация вольфрама проводилась при pH = 9 и температуре 57° С раствором аммиака, содержащим 1,75—1,8 NH₃. После очистки от мышьяка (добавлением окиси магния) рекэкстракт, содержащий 110 г/л WO₃, поступал в испаритель-кристаллизатор, где выпаривался до 0,1 первоначального объема. При содержании даже 0,0026—0,003% SiO₂ в раствор перед экстракцией вводили F⁻-ионы. Если этого не

¹ Пат. (США), № 3158438, 1964.
² Пат. (США), № 3256057, 1966.
делать, образуется тяжелая жидкя третья фаза, которая на-
акапливается в нижней части отстойника. Эта фаза тяжелее рафи-
ната и имеет следующий состав, %: 34 WO₃; 2,4 SiO₂; 36 амина,
остальное керосин и влага. Потери вольфрама в третьей фазой
достигают 8%. При введении F⁻-ионов осадок не появляется,
и извлечение вольфрама при экстракционной переработке раство-
ров составляет 99%.

A. N. Zelekin 65
Советскими исследователями изучалось извлечение вольфрама экстракцией аминами из растворов, полученных при автоклавно-
совой переработке тирьныаузских шелитовых промпродуктов [80]. Экстракцию проводили после осаждения трисульфида мо-
либдена из слабокислых растворов, содержащих, г/л: 50—60 WO₃; 0,05—0,1 Mo и 0,03 SiO₂. Экстрагентом служил раствор, содержа-
щий 10% (объемн.) амина в Cl⁻-форме, 15% спиртов фракций C₇—C₉, остальное керосин; отношение объемов Vₐ : Vₜ = 1;
экстракты содержали 44 г/л WO₃. Содержание вольфрама в ра-
финате после одной стадии экстракции 0,09 г/л (извлечение ≈ 99,8%). Реэкстракцию проводили раствором аммиака (2—4%) при
Vₐ : Vₜ = 2. При реэкстракции получали щелочные рас-
творы со средним содержанием 84,5 г/л WO₃, при этом часть воль-
фрама (11—25%) выделялась в виде осадка паравольфрамата аммо-
ния. Полученные реэкстракты упаривали в три—шесть раз, при
этом 74—83% W выделялись из раствора в виде ПВА с содержа-
нием примесей, %: 0,015—0,02 Mo; 0,02—0,003 Na; 0,02—0,05 Ca;
0,03—0,005 Si; 0,002 Al; 0,003—0,005 F. Маточные растворы при-
соединяли к исходным растворам вольфрамата натрия. Образо-
вание твердой фазы в процессе реэкстракции приводит к существен-
ному затруднению.

Установлено, что при промывке экстракта водой диспергиро-
ванный в органической фазе осадок растворяется в воде [81].
Промывные воды можно присоединять к исходным растворам.
Осадок ПВА, диспергированный в реэкстракте, отделяется фильтрацией. Он близок по составу к кристаллам ПВА, получаемым
при выпарке.

Серьезной проблемой становится очистка сточных вод экстра-
ционного передела, поскольку сточные воды могут содержать
до 80—100 мг/л тритичных аминов¹, а также в небольших количе-
ствах керосин и высшие спирты. Кроме того, сточные воды со-
держат около 2 г/л H₂SO₄. Для очистки сточных вод в работах [81,
82] рекомендуется нейтрализация раствора гашенной известно-
стью с последующей доочисткой сточных вод от органических при-
месей адсорбцией на активированном угле марки БАУ. Расход
угля составляет ≈ 0,2—0,5 г/л раствора.

О разделении молибдена и вольфрама методом экстракции.
Как уже отмечалось, на стадии экстракции солями аминов или
ЧАО молибден и вольфрам разделять нельзя. В связи с этим изу-
чалась возможность разделения элементов на стадии экстракции
из органической фазы, используя значительные различия в растворимости паравольфрамата и парамолибдата аммония [71].
Однако достаточно полного разделения не было получено. Вместе
с тем проведение реэкстракции при одновременном выделении
осадка ПВА вызывает трудности.

¹ Предельно допустимые концентрации аминов жирного ряда фракции
C₇—C₉ в воде водоемов санитарно-бытового водопользования составляют 0,1 мг/л.
Из слабокислых растворов (pH = 2÷3) молибден хорошо экстрагируется катионообменными фосфорорганическими экстрагентами — монооктилфосфорной и ди-2-этилгексилфосфорной кислотами, тогда как вольфрам практически не экстрагируется. В связи с этим изучалась возможность селективной экстракции молибдена из растворов вольфрамата натрия катионообменными экстрагентами [71, 72, 76, 84].

При экстракционном извлечении молибдена фосфорорганическими кислотами из растворов Na₂WO₄ было отмечено, что извлечение молибдена в присутствии вольфрама сильно затрудняется, причем тем больше, чем выше отношение концентраций W : Mo в растворе [71, 72]. Очевидно, что ухудшение экстрагируемости молибдена в присутствии вольфрама объясняется образованием комплексных вольфрамо-молибденовых полианионов, например [W₁₂₋ₓMoₓO₄₁]⁺⁰. Доля свободных экстрагируемых ионов MoO₄²⁻ в растворе тем меньше, чем больше отношение концентраций W/Mo.

Одновременно с уменьшением коэффициента распределения молибдена в присутствии вольфрама снижается скорость установления равновесия, поскольку в данном случае экстракция молибдена связана с деполимеризацией совместных полианионов.

Подобный характер влияния вольфрама на экстракцию молибдена Д2ЭГФК подтвержден экспериментально [85]: в то время как коэффициент распределения молибдена (Dₘₒ) при экстракции из растворов, не содержащих вольфрам, достигает ~65 и равновесие устанавливается за ~6 мин, в присутствии вольфрама равновесие не было достигнуто даже при контактировании фаз в течение 27 ч, а максимальные коэффициенты распределения на два порядка меньше, чем при экстракции из чистого раствора. Таким образом, хотя вольфрам в отличие от молибдена не экстрагируется фосфорорганическими кислотами, образование совместных полианионов делает экстракционное отделение небольших количеств молибдена от вольфрама практически невозможным.

Образование смешанных полианионов, препятствующее разделению молибдена и вольфрама, можно предотвратить введением комплексующего реагента. В аналитической химии для этой цели используются лимонная, винная кислоты и другие реагенты. Однако их применение в технологии нерентабельно.

Советские исследователи [79] показали возможность экстракционного разделения молибдена и вольфрама в присутствии доступного реагента — перекиси водорода, с которой оба элемента образуют прочные хорошо растворимые мономерные или димерные соединения, например анионы MoO₄⁻, MoO₄²⁻, WO₄⁻, W₂O₇⁻ и др. Для разделения могут быть использованы фосфорорганические соединения (например, трибутилфосфат) или соли четвертичных аммонийных оснований. В определенном интервале значений pH из раствора селективно экстрагируется молибден в форме соединений [H₅O·3H₂O 3ТБФ]HMoO₆ (при
экстракции трибутилфосфатом) или \(NR_4HMoO_6\) (при экстракции солями четвертичных аммониевых оснований) [111, 123].

Оптимальное значение рН при экстракции ТБФ от 0,4 до 0,7 при экстракции солями ЧАО от 4 до 5,5. Присутствие примесей кремния и фосфора заметно влияет на поведение вольфрама при экстракции. Было установлено, что вольфрам в слабокислых растворах, содержащих перекись водорода, образует гетерополисоединения, в состав которых входят перекисные группы [83]: \([SiW_{12}O_{48}(O_2)_{24}]^{4-}\) и \([PW_{12}O_{48}(O_2)_{24}]^{3-}\). Первое из них в отличие от соединения с фосфором хорошо экстрагируется трибутилфосфатом. Вредное влияние примесей кремния может быть нейтрализовано добавкой растворимых фосфатов, введение которых приводит к замене кремния в гетерополисоединение на фосфор с образованием плохо экстрагирующегося соединения. Возможность глубокой очистки вольфрама от молибдена экстракцией ТБФ в присутствии перекиси водорода подтверждена полупромышленными испытаниями. В производственный раствор, содержащий, г/л: \(WO_3\) 109,8; \(Mo\) 9,1; \(NaNO_3\) около 100; \(SiO_2\) 0,12, добавлены фосфат натрия (до содержания 0,12 г/л), перекись водорода (2 моля на 1 г-атом суммы вольфрама и молибдена) и азотная кислота до рН = 0,45.

После восьми ступеней непрерывной противоточной экстракции \((V_o : V_b = 1 : 1)\) водный раствор (рафинат) содержал 102,8 г/л \(WO_3\) и 0,003 г/л \(Mo\), т. е. содержание молибдена по отношению к вольфраму снизилось до 0,003% (в 3000 раз) [127, 128].

Использование ионообменных смол в технологии переработки растворов вольфрамата натрия

Получение паравольфрамата аммония. Ионообменная сорбция аналогично экстракции аминами может быть использована для превращения раствора вольфрамата натрия в раствор вольфрамата аммония, из которого затем выделяется паравольфрамат аммония. Подобный процесс разработан и проверен в полупромышленном масштабе канадскими исследователями [86—88].

Исходные растворы вольфрамата натрия, полученные растворением технической вольфрамовой кислоты, пропускаются через колонку, заполненную высококислотной катионитовой смолой «Дауекс 50W × 8 (8% дивинилбензола)» в \(NH_4^+\)-форме. В результате протекающего обмена ионов \(Na^+\) и \(NH_4^+\) раствор, выходящий из колонки, содержит \((NH_4)_2WO_4\), из которого выпариванием получают кристаллы паравольфрамата аммония. Присутствие других катионов также сорбируются на смоле. В полученном прокаливанием ПВА трехокси вольфрама суммарное содержание примесей составляло менее 0,05%. Смоля регенерируется пропусканием через колонку 10%-ного раствора хлористого аммония. В сорбционные колонки поступают растворы вольфрамата натрия с концентрацией не выше 60 г/л \(WO_3\) для исключения кристаллизации паравольфрамата аммония. Это повышает затраты на выпарку растворов вольфрамата аммония.

Предназначено ионообменного способа получения ПВА перед экстракционным состоит в отсутствии в сильных растворах примесей органических веществ.

Получение вольфрамовой кислоты. В работе [89] изучены условия получения вольфрамовой кислоты из раствора вольфрамата натрия путем пропускания раствора через колонку с катионитовой смолой в \(H^+\)-форме. В результате обмена из колонки вытекает коллоидный раствор вольфрамовой кислоты. Из последнего после нагревания выделяется осадок вольфрамовой кислоты. Преимущество этого
метода по сравнению с прямым осаждением вольфрамовой кислоты состоит в исключении операций отмычки вольфрамовой кислоты от сорбированной примеси хлорида натрия, так как в этом случае получается чистая водная суспензия или коллоидный раствор вольфрамовой кислоты.

Получение паравольфрамата аммония и растворов Na₂WO₄ осаждением двойных солей

В основу способа, разработанного во ВНИИТС [90—92], положено различие в растворимости паравольфраматов аммония и натрия. При введении в нейтральный раствор вольфрамата натрия (pH ≈ 7) ионов аммония (в виде хлористого аммония) выделяет малорасторвимый паравольфрамат аммония с примесью натрия (1,5—1,8% Na по отношению к WO₃). При проведении осаждения без подогрева (при 25°С) получается соль состава 4(NH₄)₂O·Na₂O·12WO₃·13H₂O, называемая двойной солью [92]. В результате последующей обработки насыщенным раствором хлористого аммония двойная соль превращается в паравольфрамат аммония. Другой возможный вариант — разложение двойной соли соляной кислотой с получением осадка вольфрамовой кислоты.

Извлечение вольфрама в осадок двойной соли составляет 88—95% в зависимости от исходного содержания трехокиси вольфрама (120—260 г/д) в растворе. Расход хлористого аммония при этом составляет 120% от THK для связывания WO₃ в (NH₄)₂WO₄. При осаждении двойной соли из горячих растворов максимальное извлечение достигается за 2 ч.

Обработка двойной соли насыщенным раствором хлористого аммония осуществляется при t: ж = 1: 5 и температуре 80—90°С. В результате обменной реакции ионы натрия из двойной соли переходят в раствор, замещаясь аммонийной группой, причем одновременно происходит некоторая очистка от примеси молибдена. Содержание натрия снижается с 1,87 (Na : WO₃ в двойной соли) до 0,002—0,004% (Na : WO₃ в паравольфрамате аммония). Общий расход хлористого аммония при осаждении двойной соли и превращении ее в паравольфрамат аммония составляет 1,6—1,8 кг на 1 кг WO₃.

После отделения кристаллов двойной соли остаток вольфрама из маточного раствора (10—20 г/д WO₃) осаждается в виде искусственного шеелита. Перед осаждением маточный раствор упаривается на 75% и из него выделяется в результате кристаллизации 70% NH₄Cl, используемого в процессе.

Предложенный способ исключает операции осаждения искусственного шеелита, разложения последнего с образованием вольфрамовой кислоты и др., значительно сокращая схему переработки растворов вольфрамата натрия. Способ опробован в промышленном масштабе на заводах СССР [91], а также в Болгарии при переработке отходов твердых сплавов [93].

Вместо соляной кислоты и хлористого аммония в технологии может быть использована азотная кислота и азотнокислый аммоний.

6. КИСЛОТНЫЕ СПОСОБЫ ВСКРЫТИЯ ШЕЕЛИТОВЫХ КОНЦЕНТРАТОВ

Переработка шеелитовых концентратов разложением соляной кислотой

Распространенный способ переработки шеелитовых концентратов — непосредственное разложение их концентрированной соляной кислотой при температурах 90—100°С, в результате которого получают техническую вольфрамовую кислоту, очищающую затем аммиачным способом.

Высокое значение константы равновесия реакции разложения шеелита соляной кислотой К = \frac{[CaCl₂]}{[HCl]³} ≈ 10000 указывает на
ее необратимость [98]. Несмотря на это, для обеспечения полного разложения шеелита приходится применять двух-, трехкратное количество соляной кислоты по сравнению с теоретически необходимым, что объясняется торможением процесса пленками кислоты, покрывающими частицы минерала.

Расход кислоты может быть снижен (до 120% от THK) при осуществлении процесса в герметичных обогреваемых шаровых мельницах, где разложение протекает при одновременном размole, что приводит к снятию пленок вольфрамовой кислоты с частиц шеелита [94]. Шары и футеровку мельниц изготовляют из плавленого диабаза. Обогревать подобный реактор сложно. Приходится нагревать пульпу острым паром, что ведет к ее разбиванию и потерям кислоты вследствие испарения. Рационально проводить разложение в герметичных реакторах с мешалкой, футерованных кислотостойкой эмалью и обогреваемых через паровую рубашку. Это позволяет проводить разложение при 100—110° С. Продолжительность разложения составляет 4—12 ч в зависимости от степени измельчения, условий разложения и происхождения концентрата (шеелиты различных месторождений сильно отличаются по реакционной способности). В пульпу добавляют 0,2—0,5% HNO₃ для предотвращения частичного восстановления вольфрамовой кислоты до соединений низшей валентности сероводородом, выделяющимся при разложении примесей сульфидов, содержащихся в концентрате.

Однократная обработка не всегда (влияет происхождение и состав шеелитового концентрата) приводит к полному разложению. В этом случае после растворения вольфрамовой кислоты в аммиачной воде остаток повторно обрабатывают соляной кислотой. Из аммиачных растворов выделяют паравольфрамат аммония или осаждают вольфрамовую кислоту.

Кислотный способ выгодно отличается от щелочных способов вскрытия меньшим числом операций технологической схемы (рис. 15). Для получения трехокиси вольфрама более высокой чистоты паравольфрамат разлагают кислотой и проводят вторую аммиачную очистку. Однако при значительному содержании примесей двукратная аммиачная очистка может оказаться недостаточной для получения кондиционного паравольфрамата аммония. Увеличение числа операций его очистки из-за большого расхода реагентов незакономично. Поэтому способ вскрытия соляной кислотой большей частью применяется при переработке богатых (до 75% WO₃) и чистых шеелитовых концентратов. Так, солянокислый способ применяется для переработки богатых шеелитовых концентратов на заводе «Коромант» (Швеция) [95], на комбинате в Спрингсе (ЮАР) [96], на заводе «Камидзакидзава» (Япония) [26], на заводе «Фуллертон Роуд» в Ротерхейме (Великобритания) [7].
Рис. 15. Технологическая схема переработки шеелитовых концентратов солянокислым способом
Поведение примесей при разложении шеелитовых концентратов соляной кислотой

В процессе кислотного разложения шеелита происходит очистка кислоты от ряда примесей (железа, фосфора, молибдена, щелочных и щелочноземельных металлов), большая часть которых переходит в солянокислый раствор. Однако при значительном содержании примесей в концентрах очистка от них происходит в недостаточной степени.

Кислотный способ представляет особый интерес для разложения шеелитовых концентратов с высоким содержанием молибдена (до 5%). При достаточном избытке кислоты (остаточной кислотности 150—200 г/л HCl) большая часть содержащегося в шеелите молибдена переходит в солянокислый раствор, что объясняется высокой растворимостью молибденовой кислоты в соляной кислоте (табл. 9). Полное отделение молибдена, однако, не достигается. Осадки вольфрамовой кислоты содержат 0,2—0,3% Mo, извлечение которого повторной обработкой соляной кислотой не удается. Дальнейшее повышение остаточной кислотности не приводит к снижению содержания молибдена в технической вольфрамовой кислоте [99]. По всей вероятности, это объясняется образованием твердого раствора H₂MoO₄ в H₂WO₄.

Таблица 9

<table>
<thead>
<tr>
<th>Концентрация HCl, г/л</th>
<th>Растворимость, г/л, при температуре, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>H₂MoO₄</td>
</tr>
<tr>
<td>400</td>
<td>380</td>
</tr>
<tr>
<td>270</td>
<td>182</td>
</tr>
<tr>
<td>200</td>
<td>91,8</td>
</tr>
<tr>
<td>130</td>
<td>24,0</td>
</tr>
<tr>
<td>80</td>
<td>11,1</td>
</tr>
<tr>
<td>40</td>
<td>2,34</td>
</tr>
</tbody>
</table>

Несколько более полное удаление молибдена (до ~ 0,1%) достигается при разложении шеелита соляной кислотой в присутствии восстановителя, восстанавливющего шестивалентный молибден до молибденовой сини. В качестве восстановителя было предложено использование порошок ферросилиция, при растворении которого в соляной кислоте выделяется водород, восстанавливающий Mo (VI) и Mo (V). Восстановителем может служить также вольфрамовый порошок, добавляемый в конце процесса разложения шеелита соляной кислотой. Снижение содержания молибдена в вольфрамовой кислоте до 0,02—0,05% возможно при экстракции молибдена из кислых пульп вольфрамовой кислоты (см. с. 75).
Присутствие фосфора в концентрациях в значительных количествах (0,2—0,5%) способствует переходу вольфрама в солянокислые растворы, что объясняется образованием вольфрамофосфорных гетерополикислот, растворимых в соляной кислоте. Было показано, что в присутствии фосфора минимальный переход вольфрама в солянокислый раствор обеспечивается при избыточной кислотности в конце разложения, равной 150—180 г/л HCl [101].

Извлечение вольфрама и молибдена из отработанных солянокислых растворов

В зависимости от состава шеелитового концентрата отработанные солянокислые растворы содержат 0,5—4 г/л WO₃ и 0,2—20 г/л Mo, различные количества примесей P, Fe, 110—130 г/л CaCl₂ и 100—180 г/л HCl.

Регенерация вольфрама и молибдена из отработанной кислоты может быть осуществлена осаждением малорастворимых соединений методами экстракции и ионообменной сорбции.

Методы осаждения. Наиболее распространены методы осаждения из солянокислых растворов в результате их нейтрализации известковым молоком вольфрамата и молибдата кальция — известкового продукта. Содержание WO₃ и молибдена осаждают, если концентрация WO₃ менее 0,2 г/л. При высокой концентрации WO₃ аммиачная вода и CaCl₂ используются в качестве нейтрализующих агентов. Содержание WO₃ и молибдена осаждают при концентрации 2—3 г/л WO₃ [102]. Недостаток метода — трудная фильтруемость осадков.

Методы экстракции. Вольфрам и молибден могут быть извлечены из солянокислых растворов аммиаком, трибутилфосфатом, кетонами. Применительно к отработанным солянокислым растворам изучена экстракция триоктиламино и трибутилфосфатом.

Экстракция триоктиламином. В работе [103] описана экстракция вольфрама и молибдена аминами из солянокислых растворов, получаемых при химической доводке тяговых шеелитовых концентратов (обработка их кислотой для доведения до концентрации по примеси фосфора). Растворы содержали, г/л: Mo 5,5; W 5,2; P 0,43; Si 0,75; HCl 18. В растворах подобного состава вольфрам и молибден в большой мере должны быть связаны в кремневые и фосфорные гетерополисоединения.

На рис. 16 приведена зависимость степени экстракции молибдена в вольфраме раствором технического триоктиламина (50 г/л) в толуоле от концентрации HCl. Степень экстракции вольфрама мало зависит от концентрации HCl, тогда как для молибдена наблюдается сначала понижение степени экстракции до минимума при концентрации HCl 100 г/л, а затем возрастание. Степень экстракции кремния остается высокой, независимо от концентрации кислоты, тогда как экстрагируемость фосфора снижается почти до нуля при концентрации HCl 100 г/л (сильно экстрагируемых молибдена).
Рис. 17. Технологическая схема кислотно-экстракционного способа переработки шеелито-мовеллитовых концентратов
Сопоставляя экстрагируемость металлов и примесей, можно заключить,
что вольфрам преимущественно связан с кремнием, а фосфор с молибденом.
Понижение экстрагируемости молибдена и фосфора с ростом кислотности до
100 г/л связано с разрушением фосфоро-молибденовой кислоты и образованием
неэкстрагируемых катионов MoO$_2$$^+$ и фосфорной кислоты. В сильнокислых раство-
рах (>100 г/л) образуются анноны хлоридные комплексы типа MoO$_2$Cl$_n$(n−2)$^−$
экстрагируемые аммиаками. При кислотности 100 г/л возможно разделение воль-
фрама и молибдена на основе различия коэффициентов распределения. Однако
полное разделение не было достигнуто. Более целесообразна совместная экстра-
кция вольфрама и молибдена при концентрации HCl 10—20 г/л с последующей
рекристаллизацией металлов 10%-ным раствором едкого натра.

Экстрация трибутилфосфатом. При высокой концентрации
соляной кислоты (3—5 М), характерной для отработанных солянокислых раство-
ров, молибден и вольфрам экстрагируются трибутилфосфатом по сольватному
механизму, образуя комплексы MoO$_2$Cl$_2$·2ТБФ и WO$_2$Cl$_2$·2ТБФ. Молибден
экстрагируется с высокими коэффициентами распределения (от 100 до 1000
в зависимости от кислотности и концентрации металла) [105, 106], для
вольфрама коэффициенты распределения значительно ниже [104].

В работе К. Я. Шапиро с сотрудниками [106, 107] исследована экстракция
молибдена и вольфрама трибутилфосфатом из отработанных солянокислых
растворов и предложен вариант кислотного способа разложения молибденсодержа-
ющих шеелитовых концентратов (рис. 17), опробованный в полупромышленном
масштабе.

Существенный недостаток этой кислотной схемы — ее многостадийность.
Поскольку полного отделения молибдена при разложении соляной кислотой не
происходит, для получения паравольфрамата аммония с содержанием ~0,02% Mo
необходимо проводить две аммаличные очистки, что увеличивает расход
реагентов.

Метод сорбции. А. Г. Холмогоров с сотрудниками исследовали и разрабо-
tали процесс сорбционного извлечения вольфрама из солянокислых растворов
с применением модифицированного силоносного анионита АВ17П макропо-
ристой структуры [109, 110]. Лучшие результаты были получены с анионитом
АВ-17·(8—10) П (изооктана 0,8—1,0 массовых частей). В промышленных усло-
виях вольфрам сорбируют на установке, состоящей из ионообменных колонн
(D = 1 м, h = 2 м), работающих в две линии по четыре колонны.

Состав растворов, поступающих на сорбцию, г/л: 0,27—4,25 WO$_3$; 0,02—
0,3 Mo; 0,1—0,4 S; 30—135 CaCl$_2$; 0,009—0,001 As; 0,2—0,47 Fe; 0,001—0,008 P;
51,0—170 HCl.

Элюирование вольфрама проводят 5%-ным раствором щелочи с хлоридным
натрием (6—10%); скорость элюирования 0,8—0,3 м³/ч. Содержание WO$_3$ в бо-
гатых элюатах составляет 44—76 г/л. Обменная емкость анионита АВ = 17·10 П
(и АБ = 17·12 П) составляет 41,3—47,4%. Ионообменная технология позволила
исключить получение вторичного шеелита как промпродукта.

Кислотно-экстракционный способ переработки
шеелит-полярлтовых концентратов
с экстракцией молибдена из пульпы

Исследован и разработан кислотно-экстракционный вариант переработки
шеелитовых концентратов, содержащих молибден, заключающийся в разложении
шеелита соляной кислотой с одновременной или последующей обработкой кислой
пульпы экстрагентом — метилэтилкетоном 1 или метилфенилкетоном (аце-
тофеноном) [112—114].

Присутствующий в кислых растворах с концентрацией 5—6 н. молибден
экстрагируется кетонами по гидратно-солеватному механизму. Так, при экстра-

1 Пат. (США), № 3079226, 1963.
ции молибдена метилизобутилкетоном или ацетофероном из 6 н. раствора HCl, в котором молибден находится в составе оксихлормолибденовых кислот тип а H(MoO₃Cl₃), H₂(MoO₃Cl₄), H(MoO₃OCl) [116], образуется основное соединение состава [H₃O⁺·(H₂O)₉·n·ket]⁺·[MoO₄Cl₃·(H₂O)]⁻, которое частично диссоциирует в органической фазе [115].

На рис. 18 сопоставлена экстракция молибдена (из растворов, содержащих 10 г/л Mo) различными кетонами в зависимости от концентрации соляной кислоты [112, 114]. Экстракция молибдена кетонами при низких кислотностях незначительна. Начиная с концентрации кислоты выше 2 н. для циклогексанона (ЦГ) и 5 н. для ацетоферона (АФ) и метилэтилкетона (МИБК), значение Dₘо резко увеличиваются, достигают максимального значения и затем с дальнейшим ростом кислотности уменьшаются. Различная величина максимальных значений Dₘо у сопоставляемых кетонов объясняется главным образом различиями в их растворимости в солянокислых растворах.

Выше было отмечено, что при разложении шеелита концентрированной соляной кислотой большая часть молибдена переходит в солянокислый раствор. Однако в осадках вольфрамовой кислоты содержание молибдена не ниже 0,2—0,3%. Было установлено, что при обработке солянокислой пульпы вольфрамовой кислоты кетоном происходит полное извлечение молибдена в органическую фазу. В вольфрамовой кислоте содержание молибдена снижается до 0,02—0,04%, что обеспечивает получение паравольфрамата аммония с содержанием примеси молибдена ниже 0,005%. В отличие от других экстрагентов при обработке пульпы кетонами (МИБК, АФ) происходит хорошее разделение фаз, не наблюдается «зависания» вольфрамовой кислоты ни в одной из фаз.

При разложении шеелитового концентрата, содержащего 4,5% Mo, соляной кислотой с последующей обработкой пульпы ацетофероном было установлено, что для обеспечения содержания примеси молибдена в вольфрамовой кислоте ниже 0,1% остаточная кислотность после разложения концентрата должна быть 7,5—8,0 н. [112, 114].

Схема переработки молибденсодержащего шеелитового концентрата кислотно-экстракционным способом с экстракцией из пульпы, прошедшей полу- промышленную проверку, показана на рис. 19.

Извлечение большей части молибдена (70%) из органической фазы возможно при рекстракции водой. При этом вольфрам рекстрагируется в малой степени. Из водного рекстракта может быть выделен химический концентрат (например, осаждением CaMoO₄). Оставшиеся в органической фазе молибден и вольфрам рекстрагируются 10%-ным раствором аммиака, из рекстракта осаждается вольфрамо-молибденовый обработный продукт, поступающий на разложение соляной кислотой.

Существенные недостатки схемы — высокий расход соляной кислоты, достигающий 4,3 т HCl (плотностью 1,18 г/см³), на 1 т концентрата, что связано с необходимостью обеспечения высокой остаточной кислотности после разложения концентрата (8 н. HCl).
Солянокислотное разложение шеелитовых концентратов с последующим растворением вольфрамовой кислоты в растворе щелочи на некоторых предприятиях используют вариант технологии, при котором разложение шеелитового концентратана соляной кислотой сочетается с последующим растворением полученной вольфрамовой кислоты в растворе щелочи (вместо обычного растворения в аммиачной воде). Из растворов вольфрамата натрия получают трехокись вольфрама по обычной технологии [117]. Растворение вольфрамовой кислоты в растворе NaOH в ряде случаев обеспечивает более высокую степень извлечения вольфрама в раствор в сравнении с выщелачиванием аммиачной водой.

Эту схему используют на предприятиях Японии и Великобритании, работающих на разнообразном по составу и качеству импортном сырье и сочетающих различные способы разложения вольфрамовых продуктов (для вольфрамитовых концентратов — разложение щелочью, для богатых шеелитовых — разложение соляной кислотой, для бедных шеелитовых — автоклавно-содовое вскрытие) с последующей переработкой растворов вольфрамата натрия.

77
Аналогичный процесс разработан фирмой «Канада тунгстен майнинг корпопорейшн». Отличительной особенностью процесса является сорбционная технология получения паравольфрамата аммония из растворов вольфрамата натрия, как описано выше (с. 68) [86—88]. Извлечение в ПВА при переработке концентратов, содержащих 41,3—64% WO₃, составляло 96—98%.

Разложение шеелитовых концентратов азотной кислотой [118—123]

Шеелит разлагается азотной кислотой по реакции:

$$\text{CaWO}_4 + 2\text{HNO}_3 \rightarrow \text{H}_2\text{WO}_4 + \text{Ca(NO}_3\text{)}_2.$$ \hspace{1cm} (3.41)

Экспериментально определенная концентрационная константа равновесия имеет значение 757 [118].

Азотнокислое вскрытие шеелитового концентраата включает те же операции, что и солянокислое. Однако эта технология выгодно отличается от солянокислой ликвидацией вредных выбросов растворов хлористых солей, вместо которых получают азотнокислые соли, используемые в сельском хозяйстве в качестве удобрения, и упрощением аппаратурного оформления процесса (при использовании азотной кислоты пригодна аппаратура из нержавеющей стали, в то время как применение соляной кислоты требует кислотостойкой футеровки).

Ю. Н. Юркевич с сотр. изучал разложение шеелитовых концентратов Ингичкинского месторождения в реакторах с мешалками [120, 121].

Расход кислоты составлял 370—400% от THK в расчете на WO₃ в концентрате [120], что соответствует 170—200% от THK в расчете на CaO в концентрате (концентраты содержат кальцит). Время разложения 3 ч, температура 100°С. Степень разложения концентратов при этих условиях составляет 98%.

Оптимальные условия вскрытия богатого шеелитового продукта (78% WO₃) в аппарате с мешалкой найдены канадскими исследователями: температура 100°С, т : ж = 1 : 2, время обработки 4 ч, концентрация HNO₃ 8 н. (~40%), расход HNO₃ составляет 0,47 кг на 1 кг концентрат (0,603 кг HNO₃) на 1 кг WO₃, что соответствует 160% от THK в пересчете на окись кальция, содержащуюся в концентрате. Степень разложения шеелита составила 97,8%. Концентрация азотной кислоты в растворе после разложения ~15%, степень перехода вольфрама в раствор 0,74%, что соответствует концентрации WO₃ в растворе ~2,3 г/л.

Г. А. Мейсон и В. Г. Михайлова показали, что разложение шеелитового концентрата азотной кислотой в обогреваемых шаровых мельницах позволяет снизить расход кислоты до 120% от THK [119, 122]. Теоретическое количество кислоты определяли в расчете на взаимодействие с CaO и другими кислоторазрушимыми окислами в концентрате.

1 Пат. (США), № 3457034, 1969.
При разложении шеелитового концентрата азотной кислотой в обогреваемых шаровых мельницах наблюдается заметный переход вольфрама в азотнокислый раствор (40—45 г/л) [119]. Изучение растворимости вольфрамовой кислоты в азотной показало, что при 100°С она составляет лишь 0,01—0,014 г/л.

Вольфрам в азотнокислом растворе находится в основном в виде коллоидного раствора вольфрамовой кислоты, а частично, возможно, связан в гетерополикислоты или их соли.

Для уменьшения содержания вольфрама в азотнокислых растворах в пульпу в конце разложения предложено добавлять в качестве коагулянта аммиачный раствор в количестве 5% объема раствора (до рН = 2). При этом примеси сохраняются в растворе, а большая часть вольфрама осаждается. Получаются растворы с содержанием 1—1,5 г/л WO₃, что соответствует переходу в раствор 0,4% от общего количества его в концентрате [132].

Поведение молибдена при азотнокислом разложении шеелитового концентрата резко отличается от его поведения при разложении соляной кислотой. При азотнокислом разложении молибденсодержащего концентрата в раствор переходит всего около 3% Mo, содержащегося в концентрате, что объясняется низкой растворимостью молибденовой кислоты в азотной при температуре 100°С (1—3 г/л) [119, 122].

Изучалась возможность разложения молибденсодержащих шеелитовых концентратов азотной кислотой с последующим экстракционным разделением вольфрама и молибдена [124]. Разложение проводили в присутствии фосфат-ионов, обеспечивающих перевод вольфрама и молибдена в азотнокислый раствор в виде вольфрамофосфорной и молибденофосфорной кислот. При экстракции из растворов с концентрацией HNO₃ 6—9 н. трибутилфосфатом преимущественно экстрагируется вольфрам. Однако удовлетворительное разделение не достигается, возможно, вследствие образования совместных гетерополисоединений вольфрама и молибдена.

В работе [125] показана возможность интенсификации разложения шеелитового концентрата азотной кислотой при воздействии упругих колебаний звукового диапазона.

Разложение шеелита кислотами с выщелачиванием вольфрамовой кислоты многоатомными спиртами

Исследованы различные варианты получения чистой вольфрамовой кислоты из шеелитовых концентратов, основанные на растворении технической вольфрамовой кислоты в простых или многоатомных спиртах [126—130], однако они не нашли промышленного применения.

Технология, предложенная Форвардом и Виссом [126], вкл. чает следующие операции.
1. Разложение шеелита серной кислотой с получением вольфрамовой кислоты.
2. Растворение вольфрамовой кислоты в этиленгликоле.
3. Гидролитическое разложение вольфрамового соединения с этиленгликолем в присутствии галоидных соединений с выделением H₂WO₄ и регенерацией растворителя.

79
Предполагается, что растворение вольфрамовой кислоты в этиленгликоле протекает по реакции:

\[
x \left[\text{CH}_2-\text{OH} \right] + x\text{H}_2\text{WO}_4 = \left[\text{CH}_2-\text{O} - \text{WO}_2 \right]_x + 2x\text{H}_2\text{O}.
\]
(3.42)

Выделяющаяся вода при температуре выше 100° С испаряется. При добавлении воды к органической фазе, содержащей 80—150 г/л WO₃, образуется вольфрамовая кислота и регенерируется растворитель:

\[
\text{[C}_2\text{H}_4\text{WO}_4]_x + 2x\text{H}_2\text{O} \rightarrow x\text{H}_2\text{WO}_4 + x\text{[CH}_2\text{OH-CH}_2\text{OH}].
\]
(3.43)

Преимущества способа: единственным безвозвратно расходуемым реагентом является серная кислота, этиленгликоль полностью регенерируется (должны выполняться лишь механические потери); все процессы протекают при атмосферном давлении. Конечный продукт получается в кристаллической форме, причем размеры частиц можно регулировать изменением режимов гидролиза. Способ может быть использован для очистки вольфрамовой кислоты от примесей.

Другие варианты технологии заключаются в разложении вольфрамовых концентратов соляной кислотой с одновременным или последующим растворением вольфрамовой кислоты в спиртах или в проведении хлорирования концентрата в среде спирта.

Снис предложил выщелачивать щелелитовый концентрат при оптимальных режимах концентрированным раствором органических спиртов, обработанных галогенидами.

Условия и варианты переработки шеелита хлорированием в среде этиленгликоли изучены также советскими исследователями [129, 130].

Наиболее перспективным представляется разложение серной кислотой, поскольку в этом случае сбросным продуктом является сульфат кальция. Кроме того, стоимость серной кислоты значительно ниже стоимости соляной кислоты.

7. ОЧИСТКА ВОЛЬФРАМОВОЙ КИСЛОТЫ

Техническая вольфрамовая кислота, полученная одним из описанных методов, может содержать 0,2—3% примесей в виде солей кальция и натрия, кремнекислоты и молибденовой кислоты, адсорбированных солей железа, марганца и алюминия, соединений фосфора, мышьяка и др., а также неразложившегося шеелита (в случае вольфрамовой кислоты, полученной после разложения шеелитового концентриата). Суммарное содержание SiO₂, щелочных и щелочноземельных металлов, обычно составляющих основную массу примесей, характеризуется остатком от хлорирования. Последний представляет собой результат хлорирования точной навески вольфрамовой кислоты (или вольфрамового ангирида) сухим хлором или хлористым водородом при 800° С. При хлорировании удается летучие хлориды вольфрама, железа, марганца, алюминия, фосфора и др. Остаток содержит SiO₂ и хлориды щелочных и щелочноземельных металлов. В вольфрамовой кислоте или ангиридде, применяемых для производства вольфрамо-

1 Пат. (США), № 3271104, 1966; № 1137518, 1968.
вой проволоки, допускается остаток от хлорирования до 0,1%, в ангириде, применяемом для производства карбида вольфрама, — до 0,1—0,15%.

Общепринят аммиачный способ очистки вольфрамовой кислоты. Последняя легко растворяется в водном растворе аммиака с образованием раствора вольфрамата аммония. При этом большая часть примесей остается в осадке: кремнезем, гидроокиси железа и марганца и кальций в виде CaWO₄. Из аммиачного раствора большой частью выделяют паравольфрамат аммония, иногда — вольфрамовую кислоту.

Вольфрамовая кислота поступает на растворение в виде предварительно приготовленной суспензии, нагретой до 80—85° С. Суспензию вливают в реактор, содержащий 25%-ный раствор аммиака. После отстаивания аммиачные растворы отделяют от осадка декантацией. Растворы имеют плотность 1,18—1,27, что соответствует концентрации 150—200 г/л WO₃.

Аммиачные растворы свободны от основной массы примесей, содержащихся в технической вольфрамовой кислоте. Однако они могут содержать молибден, соли натрия, магния и примесь железа.

Выделение паравольфрамата. Для выделения паравольфрамата из аммиачного раствора используются способами выпаривания или нейтрализации раствора.

Способ выпаривания. При упаривании аммиачного раствора удаляется часть аммиака и образуется паравольфрамат аммония. После охлаждения из раствора выпадают кристаллы пластинчатой модификации:

\[
12(NH_4)_2WO_4 \rightarrow 5(NH_4)_2O \cdot 12WO_3 \cdot 5H_2O + 14NH_3 + 2H_2O. \quad (3.44)
\]

Кристаллы отжимают на фильтре, промывают холодной водой и сушат. Выпаривание ведут в аппаратах периодического или непрерывного действия до определенного объема из расчета выделения 75—90% вольфрама. Более глубокую кристаллизацию проводить нежелательно во избежание загрязнения кристаллов примесями.

Кристаллы ПВА отделяют от маточного раствора на центрифуге и промывают холодной водой. Из маточного раствора, обогащенного примесями, вольфрам осаждают в виде CaWO₄ или H₂WO₄, которые возвращают на соответствующие стадии производства.

Если в исходном растворе вольфрамата аммония присутствует молибден, то вместе с паравольфраматом аммония кристаллизуется парамолибдат аммония. Однако паравольфрамат — менее растворимая соль, чем парамолибдат. Поэтому, применяя фракционную кристаллизацию, можно отделить молибден от вольфрама (рис. 20).
Например, при испарении 60% жидкости выпадает в осадок 55% W, от находившегося в растворе, и только 12% Mo. Таким образом, первые фракции кристаллов паровольфрамата аммония могут содержать лишь следы молибдена, что позволяет использовать их для производства чистого вольфрама. В следующей фракции соли, выделенной из маточного раствора, содержание молибдена выше.

Для получения более чистой вольфрамовой кислоты иногда используют двухкратную аммиачную очистку: из первого аммиачного раствора осаждают вольфрамовую кислоту, осадок растворяют в аммиачной воде, затем из раствора выделяют кристаллы паровольфрамата аммония.

Эффективность аммиачной очистки вольфрамовой кислоты (по Смителлу) [9] иллюстрируют приведённые ниже данные по суммарному содержанию примесей (%) по отношению к WO₃:

<table>
<thead>
<tr>
<th>Содержание примесей, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Исходная вольфрамовая кислота (техническая)</td>
</tr>
<tr>
<td>Первый раствор H₂WO₄ в аммиачке</td>
</tr>
<tr>
<td>H₂WO₄, осажденная из первого раствора</td>
</tr>
<tr>
<td>Второй раствор H₂WO₄ в аммиачке</td>
</tr>
<tr>
<td>Кристаллы паравольфрамата аммония после выпаривания и кристаллизации</td>
</tr>
</tbody>
</table>

* Некоторое увеличение за счет содержания железа в соляной кислоте.

Способ нейтрализации. При осторожной нейтрализации холодных аммиачных растворов выделяется игольчатый паравольфрамат аммония (с одиннадцатью молекулами H₂O) по суммарной реакции:

\[
12(NH₄)₂WO₄ + 14HCl + 4H₂O =
= 5(NH₄)₂O·12WO₃·11H₂O + 14NH₄Cl. \quad (3.45)
\]

Раствор нейтрализуют медленным осторожным добавлением HCl при постоянном перемешивании во избежание местного пересыщения кислотой, которое может привести к образованию мета-вольфрамата. Степень осаждения сильно зависит от значения рН раствора, оптимальное значение рН = 7,3–7,4.

После длительного (до 24 ч) стояния из раствора выделяется 85—90% вольфрама в виде игольчатого паравольфрамата. Обычно соль имеет высокую степень чистоты. Иногда с целью дополнительной очистки ее разлагают соляной кислотой, получая вольфрамовую кислоту. Для этого соль небольшими порциями загружают
в реактор, содержащий концентрированную HCl, после чего раствор доводят до кипения.
Способ нейтрализации уступает способу выпарки, так как требует затраты чистой соляной кислоты.

8. ПОЛУЧЕНИЕ ТРЕХОКИСИ ВОЛЬФРАМА
И КОНТРОЛЬ КАЧЕСТВА ПРОДУКЦИИ

Трехокись вольфрама получают прокаливанием вольфрамовой кислоты или паравольфрамата аммония:

$$\text{H}_2\text{WO}_4 \rightarrow \text{WO}_3 + \text{H}_2\text{O}; \quad (3.46)$$
$$5(\text{NH}_4)_2\cdot12\text{WO}_3\cdot\text{nH}_2\text{O} \rightarrow$$
$$\rightarrow 12\text{WO}_3 + 10\text{NH}_3 + (n + 5)\text{H}_2\text{O}. \quad (3.47)$$

Вольфрамовая кислота полностью теряет воду при 500°С, паравольфрамат аммония разлагается нацело выше 250°С. Температура прокаливания ПВА зависит от назначения трехокиси вольфрама. Так, если WO₃ предназначена для получения вольфрама марок ВА и ВМ, в трехокись вольфрама вводят кремнеземистую присадку и соли алюминия. В этом случае прокалка ПВА ведется при 500—550°С, так как при таких температурах разложения соли получается WO₃, способная образовать с присадками гетерополикомплексы. Для получения вольфрама марок ВЧ и ВТ, не содержащих кремнеземистой присадки, прокалку ПВА ведут при 800—850°С [131].

Для производства вольфрама, а также карбида вольфрама важное значение, помимо чистоты вольфрамового ангидрида, имеет величина его частиц, которая зависит от условий получения вольфрамовой кислоты и температуры прокаливания. Зернистость любого порошка можно косвенно характеризовать величиной насыпной массы (масса единицы объема свободно насыпанного порошка). Мелкозернистые порошки имеют меньшую насыпную массу, чем грубозернистые.

В последнее время введен новый более точный метод контроля крупности порошка по количеству адсорптируемых паров метанола (чем больше удельная поверхность порошка, тем выше степень поглощения).

Как видно из табл. 10, с увеличением температуры прокаливания растет насыпная масса и падает количество сорбированного метанола, т. е. уменьшается величина удельной поверхности вольфрамового ангидрида.

Вольфрамовый ангидрид, полученный из паравольфрамата аммония, обычно имеет более крупные частицы, чем ангидрид из вольфрамовой кислоты.

В табл. 11 приведены примерные технические условия на трехокись вольфрама.
ТАБЛИЦА 10

ЗАВИСИМОСТЬ ФИЗИЧЕСКИХ СВОЙСТВ ПОРОШКА ВОЛЬФРАМОВОГО АНГИДРИДА ОТ ТЕМПЕРАТУРЫ ПРОКАЛИВАНИЯ ВОЛЬФРАМОВОЙ КИСЛОТЫ

<table>
<thead>
<tr>
<th>t, °C</th>
<th>Адсорбция метанола, мг/г</th>
<th>Удельная поверхность, м²/г</th>
<th>Насыпная масса, г/см²</th>
<th>t, °C</th>
<th>Адсорбция метанола, мг/г</th>
<th>Удельная поверхность, м²/г</th>
<th>Насыпная масса, г/см²</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>0,99</td>
<td>3,8</td>
<td>0,61</td>
<td>750</td>
<td>0,14</td>
<td>0,54</td>
<td>0,67</td>
</tr>
<tr>
<td>600</td>
<td>0,72</td>
<td>2,76</td>
<td>0,62</td>
<td>800</td>
<td>0,06</td>
<td>0,23</td>
<td>0,73</td>
</tr>
<tr>
<td>650</td>
<td>0,59</td>
<td>2,26</td>
<td>0,62</td>
<td>850</td>
<td>0,04</td>
<td>0,15</td>
<td>0,79</td>
</tr>
<tr>
<td>700</td>
<td>0,47</td>
<td>1,8</td>
<td>0,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ТАБЛИЦА 11

ПРИМЕРНЫЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ НА ТРЕХОКИСЬ ВОЛЬФРАМА

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Содержание компонента, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>для твердых сплавов</td>
</tr>
<tr>
<td>Трехокись вольфрама</td>
<td>99,9</td>
</tr>
<tr>
<td>Молибден</td>
<td>0,1</td>
</tr>
<tr>
<td>Мышьяк</td>
<td>0,015</td>
</tr>
<tr>
<td>Фосфор</td>
<td>0,015</td>
</tr>
<tr>
<td>Сера</td>
<td>0,01</td>
</tr>
<tr>
<td>(Fe₂O₃ + Al₂O₃)</td>
<td>0,04</td>
</tr>
<tr>
<td>Железо</td>
<td>—</td>
</tr>
<tr>
<td>Алюминий</td>
<td>—</td>
</tr>
<tr>
<td>Остаток от гидрохлорирования (NaCl + CaCl₂ + SiO₂)</td>
<td>0,1</td>
</tr>
<tr>
<td>Натрий</td>
<td>—</td>
</tr>
<tr>
<td>Кальций</td>
<td>—</td>
</tr>
<tr>
<td>SiO₂</td>
<td>—</td>
</tr>
</tbody>
</table>

Примечание. Содержание трехокиси вольфрама составляет не менее, а остальных компонентов не более указанных значений.

9. ПЕРЕРАБОТКА ВТОРИЧНОГО ВОЛЬФРАМОВОГО СЫРЬЯ

Значительная доля вольфрама находится в различных видах вторичного сырья. К ним относятся: отходы вольфрамовых сталей, металлического вольфрама и его сплавов, кусковые отходы твердых сплавов, пыль от заточки твердосплавного инструмента.

Переработка отходов вольфрамовых сталей

Отходы быстрорежущих сталей (охлопка, обрез кромки после прокатки, стружка, пыль от заточки стального инструмента) перерабатывают, получая искусственный шеелит или вольфрамовую кислоту [7, 9].
Обычно отходы быстрорежущей стали сплавляют с содой или обрабатывают горячим раствором щелочи (NaOH). Из растворов вольфрамата натрия после очистки от примесей осаждают искусственный шеелит [9]. Искусственный шеелит используют в производстве ферросплавов. Иногда окалина и стружка непосредственно добавляются в шихту для производства ферросплавов [7].

В Болгарии разработана технология извлечения вольфрама из стружки вольфрамовых сталей спеканием с нитритом и карбонатом натрия [135]. Способ спекания (сплавления) с нитратами и нитритами используют для переработки отходов твердых сплавов и металлического вольфрама, как будет показано ниже.

В производстве металлорежущих инструментов 20—40% основного материала переходит в отходы в виде стружки. По предлагаемому варианту шихта для получения вольфрама состоит из 55,6% стружки, 33,3% нитрата натрия и 11,1% карбоната натрия. Спек измельчают, выщелачивают водой при t ≤ 1 : 4. Концентрация вольфрама в растворе составляет 16—20 г/л, извлечение — выше 97%. Растворы упаривают и медленно охлаждают, выделяя натриевые соли (90—95% от исходного содержания); потери вольфрама при этом не превышают 1,5%. Из осветленного раствора, содержащего 100 г/л W, осаждают вольфрамовую кислоту. Промывную кислоту сушат и прокаливают. Извлечение вольфрама из раствора вольфрамата натрия в вольфрамовый ангидрит составляет 93—94% [135].

Исследовалась возможность переработки стружковых отходов быстрорежущих сталей методами порошковой металлургии. В одних случаях стружку измельчали в вихревой [136], шаровой и вибромельницах [137], в других — из стружки сразу прессовали брикеты холодным, а затем горячим динамическим прессованием.

Положительные результаты были получены в работах Г. А. Мейрсона, С. С. Кипарисова и С. И. Богодухова [138, 139, 140]. Измельчение стружки проводится в вибрационных мельницах с добавлением поверхностно активных веществ: машинного масла 0,15 л/кг стружки (или 10% -ной олиновой кислоты 0,05 л/кг). Измельченные порошки, содержащие до 0,3% O, восстанавливают в токе сухого водорода (с точкой росы — 55—60°С). Затем порошки прессуют в стальных прессформах при давлении 10 тс/см² или в гидростате при давлении 7 тс/см².

Заготовки массой 4—5 кг после спекания при 1250°С имели относительную плотность 95%, содержание кислорода 0,001—0,0017%, углерода 0,74—0,8%. После ковки спеченных заготовок пористость практически равна нулю. Стойкость инструментов из стали, полученной этим способом из стружковых отходов, выше, чем стойкость инструментов, изготовленных из стандартной стали: для стали с твердостью HB 195—240 стойкость выше на 30—40% при точении гладкой поверхности и на 15—20% при точении с ударами. Это объясняется меньшей величиной зерен сложных карбидов в структуре стали, полученной из измельченной стружки.

В работе [144] показано, что добавки карбидов титана и ниобия (до ~5%) в измельчающую стружку быстрорежущей стали облегчают измельчение и улучшают свойства изделий из стали.

Переработка отходов металлического вольфрама

Отходы металлического вольфрама (вольфрамовый скрап), включающие слитки, прутки, проволоку, пластины, порошки, используются как вторичное сырье, при этом выбор технологической схемы переработки отходов определяется тем, в какой мере составляющие ее операции и конечные продукты переработки согласуются с технологической схемой основного производства. На предприятиях, использующих щелочевые и содо-щелочные способы вскрытия вольфрамовых концентратов, применяют один из двух методов [5, 9].

Первый способ — окисление скрапа до трехоксидов в струе воздуха. Реакция окисления экзотермична (~195 ккал/г-атом W), поэтому значительное количество тепла необходимо подводить в начале процесса (шихту нагревают до 1000°С) и небольшое количество для поддержания реакции. Использование воздуха, обогащенного кислородом, ускоряет процесс окисления, но в этом случае
возможны потери вольфрама вследствие улетучивания окислов. Трехокись вольфрама растворяется в растворе щелочи, из отфильтрованного раствора вольфрамат натрия осаждают искусственный шелит. Остаток от вышелачивания, в основном металлический вольфрам, возвращают на окисление [9].

Второй наиболее распространенный способ извлечения вольфрама из отходов металла — окисление и растворение в щелочных нитратах или нитратах [5, 9, 108]. Сплавление отходов вольфрама с селитрой проводят в отражательных печах с мазутным или газовым обогревом. На поду печи, представляющей собой металлическую ванну, выложенную внутри шамотным кирпичом, загружают вольфрам и небольшое количество селитры. При нагревании до 380°С селитра плавится и бурно реагирует с вольфрамом. Начавшийся процесс окисления металла поддерживается периодическим добавлением селитры и отходов; форсунку отключают, процесс идет за счет выделяющего тепла. Расход селитры составляет приблизительно 1,4 кг на 1 кг вольфрамового ангиридата в плаве. Плав выпускают в металлическую тару; после охлаждения и дробления плав вышелачивают в горячей воде. Отфильтрованный раствор вольфрамата натрия перерабатывают по обычной схеме.

В последние годы для переработки отходов тугоплавких металлов (вольфрама, молибдена и их сплавов с рением и друг с другом) используют электрохимический способ. Отходы металлов или сплавов растворяют электролитически в аммиачном или щелочном электролите. На предприятиях электронной промышленности в качестве электролита используют водный раствор аммиака, что обеспечивает короткую технологическую схему получения аммонийных солей соответствующих металлов и их смесей [139]. При анодном растворении отходов вольфрама в водном растворе аммиака по реакции \(\text{W} + 2\text{NH}_4\text{OH} + 2\text{H}_2\text{O} = (\text{NH}_4)_2\text{WO}_4 + 3\text{H}_2 (\text{r}) \) выход по току близок к 100%. Насыщение электролита проводят до содержания \(\text{WO}_3 \) 280—290 г/л, плотность раствора при этом составляет 1,24—1,25 г/см³.

Вследствие малой электропроводности чистого концентрированного раствора аммиака в исходный раствор с целью повышения его электропроводности добавляют соли, легко удаляемые при последующей переработке растворов.

Установка для переработки отходов (рис. 21) состоит из заполненной аммиачным электролитом ванны, в нижней части которой расположен насадкой анод с металлической подложкой, крышки с уплотненным в ней катодом, механизма для регулирования катода (по высоте) и системы циркуляции и охлаждения электролита, состоящей из насоса, холодильника, регулировочного вентиля и трубопровода.

Подложка анода и катода, снабженные водяным охлаждением, расположены горизонтально и имеют примерно одинаковые геометрические размеры, что способствует сохранению постоянной анодной плотности тока и стабилизирует процесс. Подложку анода изготавливают из нержавеющей стали; катод — из вольфрама.

Для создания хорошего электроконтакта и компактности металлические отходы подготовляют к растворению. Порошкообразные отходы диспергируют в брикеты. Проволочные отходы перед брикетированием превращают на механических ножницах в «сечение», а затем диспергируют, перемешивают предварительно куски тонкой и толстой проволок. Отходы прутков и штабиков рубят на куски, размеры которых не превышают 400 мм. При загрузке брикеты проволочных и порошкообразных отходов чередуют с отходами компактного металла.

Растворение отходов осуществляют при плотности тока 3—4 тыс. А/м². По окончании процесса насыщенный электролит отстаивают, фильтруют и по- дают в выпарную аппарат. Далее по обычной технологии получают паровольфрамат аммония или смесь аммонийных солей (в случае переработки сплавов). При переработке отходов, легированных окислями тория или редкоземельных металлов, последние переходят в шламы.

На одном из металлургических предприятий отходы торированных вольфрама, содержащие до 1,5—5% двукиси тория, подвергают анодному растворению в растворе NaOH [140]. Суммарная электрохимическая реакция может быть выражена уравнением:

\[
\text{W(ThO}_2\text{)} + 2\text{NaOH} + 2\text{H}_2\text{O} = \text{Na}_2\text{WO}_4 (\text{r-r}) + 3\text{H}_2 (\text{r}) + \text{ThO}_2 (\text{tv}). \quad (3.48)
\]
Электрохимическое растворение проводят в стальных облицованных пластиком ваннах емкостью 700 л, куда в качестве электролита заливают раствор ёдкого натра (65 г/л) и устанавливают винипластовые контейнеры с отходами тонированного вольфрама. Процесс ведут при температуре 40—45°С, силе тока 1000—1300 А, напряжении 18—20 В. Насыщение электролита ведется до содержания WO₉ 125—135 г/л, что достигается примерно за 5 сут работы электролизера. По окончании цикла электролит, содержащий шламовые частицы двуокиси тория и металлического вольфрама, перекачивают в отстойники. Отфильтрованные на нутч-фильтре растворы после контроля на радиоактивность направляют в основное производство на получение вольфрамового ангирида. Твердый продукт из отстойников и фильтров после промывки направляют в хранилище радиоактивных материалов, а затем на предприятие, производящие торневую продукцию.

Потери вольфрама со шламами составляют 0,3—0,4%.
Производительность установки, состоящей из шести электролизеров, составляет 200 кг отходов в сутки [140].
Для переработки отходов вольфрамсодержащих и вольфраммолибденовых сплавов предложено проводить окисительный обжиг [141]. При обжиге отходов сплава BR20 в токе кислорода (v = 0,8 м/мин, t = 900—950°С) в течение 4—7 ч (в зависимости от величины кусковых отходов) основная масса рения (до 92%) концентрируется в возгонках.
Конденсат семиокиси рения растворяют в воде; из раствора добавлением аммиака осаждаются перенат аммония, при восстановлении которого водородом получают металлический порошок. Вольфрамовый ангирид, образующийся при окислении сплава, остается в исходной навеске [141]. Аналогичный процесс опробован для переработки отходов вольфраммолибденового сплава (MB-50). Окислительный обжиг проводится при 800°С; при этом до 90% трехокиси молибделена возгоняется, а частично окисленный вольфрам остается в загрузке [142, 143]. Полное разделение компонентов не достигается.
Извлечение вольфрама из кусковых отходов твердых сплавов

К кусковым отходам твердых сплавов относятся брак производства, неиспользованные части пластинок инструмента, их осколки и др. В последние годы развивается выпуск неперетачиваемого твердосплавного инструмента. В связи с этим масштабы переработки кусковых отходов увеличиваются.

Обшераспространенный способ переработки кусковых отходов твердых сплавов — сплавление с селитрой [9]. Сплавление ведут при 800—900° C в течение 1 ч; плав измельчают и вышелачивают водой. Фильтрацией отделяют раствор вольфрамата натрия от осадка, содержащего окись кобальта. Обычно из раствора вольфрамата натрия, очищенного от кремния, осаждают искусственный шеелит, из которого далее по обычной технологии получают паравольфрамат аммония.

Болгарские специалисты отмечают, что при расходе селитры, составляющем 40% от теоретически необходимого (127% от массы отходов), извлечение вольфрама в сплав достигает 99%. При водном вышелачивании сплава состава 41,53% W; 5,73% Co; 0,04% Al₂O₃; 0,31% SiO₂; 0,07% Fe получают раствор вольфрамата натрия с концентрацией вольфрама 170 г/л при 99%-ном его извлечении [93].

Горное бюро США разработало способ переработки кусковых отходов и неперетачиваемых пластин твердых сплавов, основанный на разрушеении сплава при его контакте с расплавленным цинком [155]. Кусковые отходы и цинк помещают в тигель, который нагревают в печи до температуры 500—600° C (точка плавления цинка 420° C). Кобальт переходит из твердого сплава в жидкий цинк. Затем при температуре 900° C цинк отгоняют и конденсируют в приемнике. Оставшиеся после отгонки цинка карбид вольфрама (или вольфрамодигитановые карбиды) вместе с кобальтом измельчают в шаровых мельницах, и твердосплавную смесь используют для производства твердого сплава.

Извлечение вольфрама из пылей от заточки твердосплавного инструмента

Значительные количества вольфрама содержатся в пылях, получаемых при заточке на абразивных кругах твердосплавного режущего инструмента. Около половины вольфрама и кобальта, поступающих на производство твердосплавных резцов, может быть регенерировано из этих отходов при осуществлении централизованной заточки твердосплавных резцов и организации сбора пыли на крупных металлобrabывающих заводах [145, 146]. Пылевидные отходы от заточки твердосплавного инструмента содержат, %: 3—8 WC; 0,3—0,5 Co; 20—40 Fe; 0,5—1,5 Cu; 40—50 SiC; 0,5 TiC.

В литературе описаны способы переработки пылевидных отходов с применением методов гидрометаллургии: окисительный обжиг отходов с последующим сплавлением их с содой и водным вышелачиванием пластав; автоклавное вышелачивание обожженных отходов; цинковое вышелачивание железа и кобальта с последующим окислительным обжигом твердого остатка и содовым вышелачиванием вольфрама и т. д. [147, 149—152].

При окислительном обжиге пыли вследствие большой экзотермичности реакции окисления металлического железа происходит сильное спекание материала, что приводит к снижению извлечения вольфрама при вышелачивании. Кроме того, образующиеся вольфраматы железа плохо вскрываются растворами соды. Вследствие низкого извлечения вольфрама в содовые растворы вариант обжига пыли с последующим вышелачиванием содовыми растворами оказался малоэффективным.

В работах [145, 152] для удаления Fe, Cu, Co пыль первоначально вышелачивали серной кислотой и в течение 2 ч при температуре 80° C и соотношении т : ж = 1 : 4. Избыток кислоты нейтрализовали свежими порциями пыли. Более 85% Co, 99% Fe и 80% Cu извлекаются в раствор. При обжиге пыли, отмытой от железа, меди и кобальта, окисление карбидов вольфрама при 600° C заканчивается за 2 ч. При последующем содовом вышелачивании огарка 95% W извлекается в раствор [150—152].
Другие обработанные способы (вымачивание растворами гипохлорита натрия, высокотемпературное хлорирование) также обеспечивают высокое извлечение вольфрама (85%) и кобальта (70%).

В хлорном технологическом варианте использовано большое разлине в скорости хлорирования вольфрама и карборуна, содержащегося в пыли от заточки твердосплавного инструмента.

Механизм хлорирования карбида вольфрама в составе пылевидных отходов весьма сложен, так как одновременно протекает несколько реакций: хлорирование металлического железа, меди, кобальта, карбида вольфрама и взаимодействие хлоридов тяжелых металлов с карбидом вольфрама. Скорость хлорирования вольфрама возрастает за счет каталитического действия хлоридов тяжелых металлов и в первую очередь FeCl₃ и CuCl₂. Промышленное освоение хлорного метода связано с обычными трудностями, возникающими при высокотемпературном хлорировании.

Гипоклоритный метод переработки основан на использовании окислительных свойств гипохлорита натрия в щелочных растворах. Металлические составляющие отходов (Fe, Cu, Co) окисляются с образованием гидроокисей. Карборунд в этих условиях окисляется в очень незначительной степени. Оптимальные условия процесса: 100 г/л NaOCl; 20 г/л NaOH; χ : t = 4; t = 40° С; r = 2÷4 ч. Из раствора осаждаются искусственный шелит, кек перерабатывают, извлекая меди и кобальт. Метод может быть рекомендован для бедных материалов, содержащих много железа и меди [145, 151, 152].

Непосредственная переработка пылевидных отходов гидрометаллургическими способами сложена из-за низкого содержания вольфрама и, следовательно, большого количества карбидов кремния и железа, в связи с чем резко снижается производительность металлургического оборудования и возрастает расход дорогостоящих кислот и щелочей. Поэтому изучалась возможность предварительного обогащения отходов.

В институте «Механобр» пылевидные отходы обогащали по сложной комбинированной схеме, включающей грохочение, магнитную сепарацию в слабом поле, гидравлическую классификацию на четыре класса и концентрацию каждого класса на столах. Гравитационные концентраты дорабатывались магнитной сепарацией в поле высокой напряженности и рассевом на тонких ситах (0,1 мм). Обогащенные концентраты содержали 63,5% W и 4,8% Co при выходе 4,4% и извлечении не выше 44% WO₃ и 45,5% Co. До 50% W концентрировалось в различных низкокачественных промпродуктах. Такое решение не может считаться удовлетворительным [146].

Исследованиями флотируемости карбида вольфрама и карбида кремния установлена принципиальная возможность их разделения. Флотационное извлечение карбида вольфрама из отходов может быть осуществлено с использованием олеиновой кислоты, извлечение карбида вольфрама в концентрат в лабораторных опытах составило 90%, железа в хвосты флотации 85÷95%. После удаления железа из камерного продукта магнитной сепарацией был получен концентрат карбида кремния, пригодный для использования в керамической промышленности [153].

Следует отметить, что во всех предлагаемых вариантах для улучшения экономических показателей предусматривается использование карбида кремния в производстве огнеупоров [145—154].

Институтом «Вторцветмет» предложена технологическая схема переработки пылевидных отходов, сочетающая методы обогащения и гидрометаллургии. Промышленные испытания показали перспективность использования схемы. Основная масса карборуна (31% от массы исходной пыли) отделяется сухой магнитной сепарацией на сепараторе «Ленинград» производительностью 200 кг/ч. Напряженность магнитного поля на первом ковше составляла 1000 Э, на втором и третьем коврах — соответственно 7500 и 8000 Э. Концентрация вольфрама в магнитной фракции повышается в 1,4 раза, извлечение составляет 94%. Карборундовый продукт, содержащий 1,4% WO₃; 0,07% Mo; 2,4% Fe; 0,02% Co; 0,32% Cu; 60,8% SiC; 6,7% SiO₂; 28,2% Al₂O₃, используется при изготовлении каолиновых огнеупоров.
Глава IV

ХЛОРИДЫ И ФТОРИДЫ ВОЛЬФРАМА

Вольфрам образует ряд галогенидов и оксигалогенидов, отвечающих различным степеням окисления вольфрама. Наибольший интерес представляют хлористые и фтористые соединения вольфрама. Высшие галогениды (WC1₆, WF₄) служат исходными соединениями для получения порошкообразных вольфрама высокой чистоты, а также вольфрамовых покрытий восстановлением водородом. Предложены и исследуются процессы извлечения вольфрама из рудного сырья в виде летучих галогенидов, образующихся при действии галогена или галогенсодержащих соединений (HCl, HF, CCl₄ и др.) на рудный материал.

Известны следующие хлориды, фториды и оксигалогениды вольфрама: WC1₆, WC1₅, WC1₄, WC1₂, WOCl₄, WO₂Cl₂, WOCI₃, WOCI₂, WF₆, WF₄, WOF₄, WO₂F₂. Ниже рассмотрены их свойства и способы получения.

1. ГЕКСАХЛОРИД ВОЛЬФРАМА

Свойства WCl₆

Высший хлорид вольфрама WCl₆ — твердое вещество, конденсирующееся из газовой фазы в форме темно-фиолетовых кристаллов. Существует в двух модификациях α и β. Превращение α → β наблюдается при 227—230°С, теплота превращения 3,4 ккал/моль, энтропия превращения (при 227°С) ΔS = 6,8 кал/(моль·град). Перехох β → α сопровождается увеличением объема. В структуре WCl₆ шесть атомов хлора расположены в вершинах деформированных октаэдров. Решетка ромбоэдрическая, a = 6,58 Å, α = 55°. Расстояние между атомами W—Cl равно 2,24 Å [25].

Плотность кристаллов 3,520 г/см³ (25°С). По данным [26], плотность жидкого WCl₆ 2,63 г/см³, критическая температура 650°С, критическое давление 49,1 ат, критическая плотность 0,94 г/см³, вязкость 0,89 сП, поверхностное натяжение 25 дин/см.
Зависимость плотности ρ, г/см3 и вязкости η, сП от температуры в интервале 283—440°C выражается уравнениями [26]:

$$
\rho_j = 2,721 - 1,964 \cdot 10^{-3} \Delta t - 1,90 \cdot 10^{-6} \Delta t^2, \\
\eta_j = 1,212 - 6,91 \cdot 10^{-3} \Delta t + 1,8 \cdot 10^{-5} \Delta t^2,
$$

где $\Delta t = t - t_{пл}$.

В парах WCl$_6$ — мономер энергия связи W—Cl равна 73,7 ккал/моль [27].

Основные термодинамические свойства WCl$_6$ приведены в табл. 12.

Давление пара WCl$_6$ над твердым и жидким WCl$_6$, определенное Стивенсоном с сотр. [28], описывается уравнениями (давление p измерено в мм рт. ст.):

для α-формы в интервале 185—230°C

$$
\lg p = 9,615 - 3996/T; \\
\Delta H_{субл} = 18,2 \text{ ккал/моль};
$$

для β-формы в интервале 230—281,5°C

$$
\lg p = 8,794 - 3588/T; \\
\Delta H_{субл} = 16,8 \text{ ккал/моль};
$$

для жидкого гексахлорида

$$
\lg p = 8,194 - 3253/T; \\
\Delta H_{исп} = 14,9 \text{ ккал/моль}.
$$

Давление пара твердого гексахлорида вольфрама в интервале температур 215—341°C изучали С. А. Щукарев и Г. И. Новиков [29]. Ниже сопоставлены их экспериментальные данные для некоторых температур с рассчитанными значениями по уравнению (4.3) для 215°C (α-форма WCl$_6$) и уравнению (4.4) при температурах 265°C и выше (β-форма).

\begin{tabular}{lcccccc}
t, °C & 215 & 265 & 280 & 299 & 329 & 341 \\
p, мм рт. ст. по данным: & & & & & & \\
Щукарева, Новикова & 43 & 159 & 225 & 307 & 585 & 752 \\
Стивенсона & 26,5 & 133,4 & 202,3 & 332,7 & 682,3 & 891,3 \\
\end{tabular}

Расхождения значительные для α-формы и при температурах выше 300°С для β-формы. При низких температурах (25—150°С), по данным [30], давление пара WCl$_6$ имеет следующие значения.

\begin{tabular}{lcccccc}
t, °C & 25 & 50 & 100 & 150 \\
p, мм рт. ст. & 5 \cdot 10^{-3} & 2,6 \cdot 10^{-2} & 1,0 \cdot 10^{-1} & 25,1 \\
\end{tabular}
<table>
<thead>
<tr>
<th>Хлорид и оксид</th>
<th>Состояние*</th>
<th>Температура плавления, °C</th>
<th>Температура кипения, °C</th>
<th>Энтальпия образования ΔH°_{298} ккал/моль</th>
<th>Энтропия S°_{298} кал/(моль·град)</th>
<th>Термодинамический анализ</th>
<th>Энтропия ΔS°_{298} кал/(моль·град)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Г</td>
<td></td>
<td></td>
<td>157 (β) [5]</td>
<td>68 (β)</td>
<td>(30) **</td>
<td>17 (β) [16]</td>
</tr>
<tr>
<td></td>
<td>Г</td>
<td></td>
<td></td>
<td>133 [16]</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCl₇</td>
<td>T</td>
<td>Выше 500° разлагается на W, WCl₄ и WCl₅</td>
<td>(60) ** [5]</td>
<td>(31,3) ** [5]</td>
<td>(22) **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г</td>
<td></td>
<td></td>
<td>173 [16]</td>
<td>57</td>
<td>(14) **</td>
<td></td>
</tr>
</tbody>
</table>

* T — твердое; Г — газообразное.
** В круглых скобках даны ориентировочные значения.
Выше 600° C газообразный WCl₆ заметно диссоциирует по параллельно протекающим реакциям:

\[
\text{WCl}_6 \quad (g) \rightleftharpoons \text{WCl}_5 (g) + 1/2 \text{Cl}_2; \quad (4.6)
\]

\[
\Delta H^\circ_T = 24000 - 31T; \quad (4.7)
\]

\[
\text{WCl}_6 (g) \rightleftharpoons \text{WCl}_4 (g) + \text{Cl}_2; \quad (4.8)
\]

\[
\Delta H^\circ_T = 47000 - 51T. \quad (4.9)
\]

Значения \(\Delta H^\circ_T \) приведены по данным работы [16].

На воздухе WCl₆ медленно гидролитически разлагается с образованием WO₂Cl₂ и HCl. Разложение ускоряется под действием света. В воде гексахлорид легко гидролизуется. Промежуточными продуктами гидролиза являются оксигалогениды, конечным продуктом — вольфрамовая кислота.

Гексахлорид вольфрама растворяется в органических растворителях — спиртах, эфирах, бензоле, четыреххлористом углероде, сероуглероде. Растворение обычно сопровождается частичным восстановлением W (VI) → W (V) [24].

В бензоле и в CCl₄ гексахлорид вольфрама образует комплексы соединения типа WCl₂·2L (где L — органический растворитель).

Изучены реакции взаимодействия WCl₆ с аммиаком и аминами. Аммиак при температурах ниже 0° C дает простые аддукты типа WCl₆·6NH₃, WCl₆·4NH₃ и др. При температурах выше 0° C происходит аммонолиз, например по реакции:

\[
\text{WCl}_6 \cdot 4\text{NH}_3 \rightarrow \text{WCl}_2(\text{NH}_3)_4 + 4\text{HCl} \quad (4.10)
\]

С аминами гексахлорид реагирует, образуя соединения типа WCl₂(NH₂R)₄, [W(An)₆]Cl₆ и др. [24].

Получение гексахлорида вольфрама

Наиболее просто гексахлорид вольфрама можно получить действием хлора на металлический вольфрам или ферровольфрам [31, 32, 35—37]. Труднее получить чистый WCl₆ хлорированием кислородных соединений вольфрама (WO₃, вольфраматы). В этом случае продукты хлорирования состоят из смеси оксихлоридов (WO₂Cl₂, WOCl₄) или при более высоких температурах и избытке углерода в шихте из смеси WCl₆ с оксихлоридами. Для перевода оксихлоридов в WCl₆ можно использовать способ, заключающийся в пропускании паров оксихлоридов в смеси с хлором через угольную насадку при температурах 800—900° C.

Распространенный препаративный метод получения WCl₆ — взаимодействие четыреххлористого титана с трехокисью вольфрама в запаянных кварцевых ампулах при температурах 300—400° C [33, 34].

* Пат. (США), № 312150, 1964.
Ниже рассмотрены процессы получения WCl₆ хлорированием вольфрама и ферровольфрама. О хлорировании кислородных соединений см. п. 4.

Хлорирование вольфрама. Исходным материалом для получения WCl₆ могут служить металлические отходы (брак штабиков, отходы механической обработки, отработанные детали из вольфрама и др.), а также порошки вольфрама. Последние брикетируются, и брикеты дробят до кусков размером 3—8 мм [32]. Вольфрам активно реагирует с хлором при температурах 700—800°С.

По данным [35], скорость хлорирования пластинки вольфрама в интервале температур 530—930°С описывается уравнением:

\[j_W = 1,7 \exp \left(-25,8/RT \right), \]

где \(j_W \) — скорость хлорирования, см/с.

О. Д. Кричевская и В. Л. Кремнев для температурного интервала 800—950°С получили следующую зависимость константы скорости хлорирования вольфрама от температуры:

\[K = 21600 \exp \left(-33400/T \right), \]

где \(K \) — константа скорости хлорирования, мин⁻¹.

Для температур 800 и 900°С значения \(K \) равны 0,32 \cdot 10⁻² и 1,5 \cdot 10⁻² мин⁻¹ соответственно.

В небольших масштабах хлорирование ведут в кварцевой обогреваемой трубе, в которую помещают кварцевые лодочки, содержащие 1—2 кг вольфрама (бой штабиков, дробленые брикеты порошка) [32]. В стеклянном приемнике конденсируются темнофиолетовые кристаллы гексахлорида, который обычно содержит примесь оксихлоридов (WOCl₄, WOCl₂). Их источником могут быть пленки окислов на частицах вольфрамового порошка и примесь кислорода в хлоре. Большая часть оксихлоридов может быть удалена нагреванием гексахлорида в чистых азоте или аргоне при температуре 250—260°С.

Вариант укрупненного-лабораторной установки непрерывного действия с вертикальным кварцевым реактором описан в работе [58]. В кварцевый реактор периодически загружают хлорирующий материал, снизу подают хлор. Температура процесса 700°С. Пары хлорида через обогреваемый патрубок (400°С) поступают вместе с избытком хлора в наклонно установленный конденсатор из нержавеющей стали, снабженный лопастным скребком. Разгрузочная трубка конденсатора соединена непосредственно с сухой камерой, в которой на подъемном столике находится приемник для хлорида. В сухой камере проводят расфасовку хлорида. Поступающий в реактор хлор для очистки от примеси кислорода пропускают через слой активированного угля, нагретый до 700°С, а затем через осушители с серной кислотой и P₂O₅.

При диаметре реактора 40 мм и высоте трубы 1000 мм производительность установки 10 кг гексахлорида в сутки.
В более крупных масштабах лучше проводить хлорирование вольфрама в расплаве NaCl, смеси хлоридов NaCl—KCl или карналлите. Дробленный материал или порошок периодически загружают в расплав и хлорируют при температурах 750—800° С. Большая часть хлоридов- примесей остается в расплаве, в том числе хлориды железа и алюминия. Хлорирование вольфрама катализируется введением в расплав хлорида железа (5—10%), служащего переносчиком хлора [36]:

\[
\text{FeCl}_3^- + 1/2\text{Cl}_2 \rightarrow \text{FeCl}_4^-; \tag{4.13}
\]

\[
6\text{FeCl}_4^- + \text{W} \rightarrow \text{WCl}_6 + 6\text{FeCl}_3^- \tag{4.14}
\]

В этом случае вольфрам хлорируется при 750—800° С с постоянной скоростью порядка 4·10^{-5} см/с [36].

Хлорирование ферровольфрама. Ферровольфрам целесообразно использовать для производства гексахлорида вольфрама в промышленных масштабах. Выпускаемый для легирования сталей ферровольфрам содержит 70—80% W; 0,3—1% Si; 0,1—0,2% Cu; 0,2—0,4% Mn; 0,2—0,7% Cr и ряд других примесей, иногда молибден (до 2,5%). Основные составляющие сплава — интерметаллиды (Fe₂W, Fe₇W₆) и твердый раствор вольфрама в железе.

Ферровольфрам хрупок и может быть раздроблен до кусков нужного размера на щековой дробилке. Кинетику хлорирования ферровольфрама изучали в работах [35—37].

Богатые железом фазы ферровольфрама активно хлорируются при температурах 250—300° С, тогда как фазы с высоким содержанием вольфрама активно реагируют с хлором лишь около 700° С.

При хлорировании ферровольфрама в насыщенном слое (размеры кусков 5—10 мм) в интервале температур 750—800° С наблюдается блокирование поверхности частиц сплава жидким хлористым железом (FeCl₂). Его образование объясняется термическим распадом FeCl₃ и вторичными реакциями взаимодействия FeCl₃ с составляющими ферровольфрама:

\[
\text{Fe}_2\text{Cl}_6 (г) + \text{Fe(тв)} = 3\text{FeCl}_2(ж); \tag{4.15}
\]

\[
2\text{Fe}_2\text{Cl}_6 (г) + \text{W(тв)} = \text{WCl}_4 (г) + 4\text{FeCl}_2 (ж). \tag{4.16}
\]

В связи с этим целесообразно хлорировать ферровольфрам в расплаве хлоридов (NaCl, NaCl + KCl или KCl·MgCl₂). В этом случае хлориды железа растворяются в расплаве и остаются в нем в виде комплексов NaFeCl₃ и NaFeCl₄. Интенсивное перемешивание, осуществляемое барботажем хлора через расплав, способствует ускорению процесса. Хлорирование ферровольфрама в расплаве начинается после некоторого индукционного периода (~20 мин), в течение которого в расплаве накапливаются хлориды железа, катализирующие протекание процесса. После индукционного периода ферровольфрам хлорируется со скоростью (20—30)·10^{-8} см/с. Принципиальная схема аппарата для хлорирования ферровольфрама показана на рис. 22. Поскольку в процессе
хлорирования объем расплава возрастает (накапливаются хлориды железа), часть расплава сливается через летку в сборник. Периодически в хлоратор догружают хлористые слои и кусковой ферровольфрам.

Входящая из расплава парогазовая смесь практически не содержит избытка хлора. В конденсируемом гексахлориде вольфрама содержание железа зависит от состава солевого расплава и убывает в ряду NaCl—KCl·MgCl₂—KCl от 1,2 до 0,3%, что связано с высокой комплексующей способностью KCl [37].

Очистка WCl₅

Гексахлорид вольфрама в зависимости от принятого способа хлорирования и состава исходного материала содержит различные количества примесей хлоридов других элементов, преимущественно хлоридов железа, алюминия, молибдена, щелочных металлов. Для очистки хлорида используют солевую очистку и методы дистилляции.

Солевая очистка — эффективный способ очистки гексахлорида от примесей FeCl₃ (температура кипения 319°С) и AlCl₃ (температура кипения 194°С). Метод основан на способности этих хлоридов к образованию с хлоридами щелочных металлов легко-плавких и малоотекучих соединений Me AlCl₄ и Me FeCl₄ (Me — K, Na). Температуры плавления комплексов и эвтектик в системах Me Cl—FeCl₃(AlCl₃) приведены в табл. 13.

Гексахлорид вольфрама не образует прочных комплексов с хлоридами щелочных металлов. Пропуская пары WCl₅ через колонку, заполненную кусками NaCl или KCl (или их смесь), при температурах 300—400°С можно очистить WCl₅ от примесей хлоридов железа и алюминия.

По данным работы [38], содержание Fe и Al в очищенном WCl₅ не превышает 0,0035 и 0,0012% соответственно.

Очистка ректификацией. Очистка гексахлорида вольфрама от примеси MoCl₅ и других хлоридов изучалась в работах [40, 41]. При исследовании равновесия жидкость — пар в системе
<table>
<thead>
<tr>
<th>Система</th>
<th>Соединение</th>
<th>(t_{пл})°C</th>
<th>Эвтектика</th>
<th>(t_{пл})°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>АlCl₃—NaCl</td>
<td>NaAlCl₄</td>
<td>152</td>
<td>50 АlCl₃, 50 NaCl</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61 АlCl₃, 39 NaCl</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>КАlCl₄</td>
<td>256</td>
<td>50 АlCl₃, 50 KCl</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67 АlCl₃, 33 KCl</td>
<td>128</td>
</tr>
<tr>
<td>АlCl₃—KCl—NaCl</td>
<td>NaAlCl₄</td>
<td>152</td>
<td>60 АlCl₃, 26 NaCl</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>КАlCl₄</td>
<td>256</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NaFeCl₄</td>
<td>163</td>
<td>48 NaCl, 52 FeCl₃</td>
<td>157</td>
</tr>
<tr>
<td>FeCl₃—NaCl</td>
<td>КFeCl₄</td>
<td>249</td>
<td>51 NaCl, 49 FeCl₃</td>
<td>162</td>
</tr>
<tr>
<td>FeCl₃—KCl</td>
<td>КFeCl₄</td>
<td>249</td>
<td>45 KCl, 55 FeCl₃</td>
<td>206</td>
</tr>
</tbody>
</table>

WCl₆—MoCl₅ установлено образование азеотропной смеси с содержанием 2,5% (моль.) WCl₆. Коэффициент относительной летучести со стороны чистого WCl₆ \(\alpha_{WCl₆/MoCl₅} = 3,6 \), что благоприятно для осуществления очистки гексахлорида вольфрама от MoCl₅ ректификацией [41]. Ректификационную очистку WCl₆ проводили в стеклянных колонках с ситчатыми тарелками при загрузке в куб колонны 2—2,5 кг хлорида.

При ректификации смеси 95% WCl₆ и 5% MoCl₅ в колонке с 15 тарелками получена фракция чистого WCl₆ (отбор при 336—337° C) с содержанием 0,01% Mo при выходе основной фракции 70—85% [40]; в колонке с 25 ситчатыми тарелками получена основная фракция чистого WCl₆ с выходом 60%. Ниже приведено содержание примесей в исходном и очищенном хлоридах, % (по массе) [41]:

<table>
<thead>
<tr>
<th></th>
<th>Mo</th>
<th>Fe</th>
<th>Al</th>
<th>Ca</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Исходный</td>
<td>0,69</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Очищенный</td>
<td><0,006</td>
<td>0,003</td>
<td>0,008</td>
<td><0,0008</td>
<td>0,002</td>
</tr>
</tbody>
</table>

Поведение примесей различных элементов в процессе глубокой очистки WCl₆ методами дистillation и возгонки с использованием радиоактивных индикаторов рассмотрено в публикации Оппермана [42].

2. НИЗШИЕ ХЛОРИДЫ ВОЛЬФРАМА

Пентахлорид вольфрама

Пентахлорид WCl₅ (см. табл. 12) — темно-зеленое, почти черное кристаллическое вещество. Плотность кристаллов 3,875 г/см³. Кристаллическая структура не изучена, WCl₅ парамагнетен, магнитный момент 1,01—1,05 мВ на атом W.
По данным [31], давление пара над твердым и жидким WCl₅ имеет следующие значения:

<table>
<thead>
<tr>
<th>t, °C</th>
<th>140</th>
<th>173</th>
<th>201</th>
<th>217</th>
<th>239</th>
<th>266</th>
<th>276</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ, мм рт. ст.</td>
<td>4,0</td>
<td>21</td>
<td>64</td>
<td>87</td>
<td>220</td>
<td>444</td>
<td>582</td>
<td>760</td>
</tr>
</tbody>
</table>

Твердое состояние Жидкое состояние

В парах пентахлорид находится в форме димеризованных молекул W₂Cl₁₀. Плотность пара при 350°С составляет 12,14—12,43 г/см³.

В газовой фазе пентахлорид частично диспропорционирует [43]:

\[
W₂Cl₁₀ (г) \rightleftharpoons WCl₄ (г) + WCl₆ (г);
\]
\[
\Delta G = 6000 - 5T. \tag{4.17}
\]

В атмосфере сухого воздуха при комнатной температуре WCl₅ устойчив, но быстро гидролизуется в присутствии влаги, образуя темно-зеленую расплывающуюся массу.

Пентахлорид вольфрама обычно получают восстановлением WCl₆ водородом при 380—400°С. Однако продукт восстановления, как правило, содержит примеси низших хлоридов. Лучший метод — восстановление WCl₆ в твердом состоянии фосфором [15]:

\[
WCl₆ (тв) + 1/3P (тв) = WCl₅ (тв) + 1/3PCl₃ (г);
\]
\[
\Delta G = -3000 - 18T. \tag{4.19}
\]

По данным работы [62], WCl₅ можно получить, восстанавливая гексахлорид двуххлористым оловом.

В расплавах хлоридов щелочных металлов WCl₅ образует комплексы типа Me⁺WCl₆.

Тетрахлорид вольфрама

Тетрахлорид WCl₄ (см. табл. 12) — вещество серо-бурого цвета, плотность 4,62 г/см³, термически неустойчив, диспропорционирует примерно с 300°С по реакции:

\[
3WCl₄ (тв) \rightleftharpoons WCl₂ (тв) + 2WCl₅ (г);
\]
\[
\Delta G = 66000 - 90T, \text{ кал (300 — 430°С)}. \tag{4.21}
\]

В интервале 450—600°С реакция протекает в газовой фазе:

\[
3WCl₄ (г) \rightleftharpoons WCl₂ (тв) + 2WCl₅ (г);
\]
\[
\Delta G = -50000 + 60 \ T, \text{ кал}. \tag{4.23}
\]

Значения ΔG для указанных интервалов температур приведены по данным работы [43].

Тетрахлорид вольфрама легко гидролизуется, гидролиз сопровождается диспропорционированием с образованием производных трех- и пятивалентного вольфрама [44]:

\[
4WCl₄ + 7H₂O \rightleftharpoons H₃W₂Cl₉ + H₄W₂O₇ + 7HCl. \tag{4.25}
\]

98
Тетрахлорид вольфрама растворяется в сероуглероде и монохлориде серы.
Известны следующие методы получения WCl₄.
Восстановление WCl₆ водородом; взаимодействие WO₂ с CCl₄ в запаянной ампуле:

\[\text{WO}_2 + \text{CCl}_4 = \text{WCl}_4 + \text{CO}_2. \] \hspace{1cm} (4.26)

Восстановление WCl₆ фосфором [43]:

\[\text{WCl}_6 \text{ (тв)} + 2/3 \text{P} \text{ (тв)} = \text{WCl}_4 \text{ (тв)} + 2/3\text{PCl}_3 \text{ (г);} \] \hspace{1cm} (4.27)
\[\Delta G = -12000 - 18 \ T. \] \hspace{1cm} (4.28)

Взаимодействие WOCl₄ с PCl₃ [43]:

\[\text{WOCl}_4 \text{ (тв)} + \text{PCl}_3 = \text{WCl}_4 \text{ (тв)} + \text{POCl}_3 \text{ (г);} \] \hspace{1cm} (4.29)
\[\Delta G = -11000 - 33 \ T. \] \hspace{1cm} (4.30)

Восстановление паров WCl₆ алюминием при температуре 475° C в эвакуированной трубке [45].

Дихлорид вольфрама

Дихлорид WCl₂ (см. табл. 12) — вещество серого цвета, тугоплавкое и нелетучее. Рентгеноструктурные исследования показали, что дихлорид представляет собой гексамер [W₆Cl₁₈]Cl₄ со связями W—W. Решетка орторомбическая. В основе структуры лежит многоядерный ион (W₆Cl₁₈)⁴⁺. Структура WCl₂ аналогична структуре дихлорида молибдена [46]. При температурах 490—580° C дихлорид диспропорционаирует с образованием вольфрама, WCl₄ и WCl₅ [43]:

\[2\text{WCl}_2 \text{ (тв)} = \text{W} \text{ (тв)} + \text{WCl}_4 \text{ (г);} \] \hspace{1cm} (4.31)
\[\Delta G^\circ = 59 \ 000 — 67 \ T, \text{ кал;} \] \hspace{1cm} (4.32)
\[5\text{WCl}_2 \text{ (тв)} = 3\text{W} \text{ (тв)} + 2\text{WCl}_5 \text{ (г);} \] \hspace{1cm} (4.33)
\[\Delta G^\circ = 129 \ 000 — 145 \ T, \text{ кал.} \] \hspace{1cm} (4.34)

Дихлорид вольфрама на воздухе окисляется, в воде нерастворим, но энергично с ней реагирует с выделением водорода.

Дихлорид вольфрама можно получить восстановлением WCl₆ водородом, фосфором, алюминием. Однако лучший способ — термическое разложение WCl₄ при 450—500° C в вакууме по реакции (4.21) [15].

3. ОКСИХЛОРИДЫ ВОЛЬФРАМА

Наиболее характерными, устойчивыми и практически важными являются оксихлориды W (VI) — WOCl₄ и WO₂Cl₂. Изучен также оксихлорид W (IV) — WOCl₂. Основные термодинамические характеристики оксихлоридов вольфрама приведены в табл. 12.

* 99
Окситетрахлорид вольфрама

Окситетрахлорид WOCl₄ (см. табл. 12) — темно-красные иглообразные кристаллы тетрагональной сингонии. Параметры: \(a = 8,49 \text{ Å}, \ c = 3,99 \text{ Å} \). Решетка построена из плоскоквадратных элементов WCl₄, связанных цепочками кислородных атомов. Расстояние между атомами W—Cl равно 2,28 Å, между атомами W—O 2,2 Å [47].

Плотность твердого WOCl₄ 3,95 г/см³, жидкого 2,73 г/см³. Плотность пара 0,005 г/см³, вязкость жидкого WOCl₄ равна 0,643 см²/с, вязкость пара 0,019 см², поверхностное натяжение 24,1 дин/см (расчетная величина) [14].

\[
\lg p = 9,743 - 4789/T;
\]

для испарения

\[
\lg p = 4,564 - 2250/T.
\] (4.35) (4.36)

Выше точки плавления (209° C) газообразный WOCl₄ частично разлагается согласно реакции [6]:

\[
2\text{WOCl}_4 \ (г) \rightleftharpoons \text{WO}_2\text{Cl}_2 \ (г) + \text{WCl}_6 \ (г).
\]

В воде WOCl₄ гидролизуется с образованием вольфрамовой кислоты.

Окситетрахлорид хорошо растворим в сероуглероде и однохлористой сере. Известны различные методы получения WOCl₄. Среди них: хлорирование трехокиси вольфрама HCl [48], CCl₄ [34], S₂Cl₂ [49], SOCl₂ [50], хлором в присутствии углерода [51], взаимодействие WO₃ с WCl₆ в запаянной ампуле [91].

Диоксидицихлорид вольфрама

Диоксидицихлорид WO₂Cl₂ (см. табл. 12) — светло-желтое кристаллическое вещество, рететка орторомбическая. Параметры ячейки: \(a = 3,87 \text{ Å}, \ b = 3,892 \text{ Å}, \ c = 13,882 \text{ Å} \) [53]. Диоксидицихлорид выше 298° C в твердом состоянии разлагается по двум одновременно протекающим реакциям (4.38) и (4.40) и вместе с тем заметно возгоняется [6, 54]:

\[
2\text{WO}_2\text{Cl}_2 \ (тв) \rightleftharpoons \text{WO}_3 + \text{WOCl}_4 \ (г);
\]

\[
\Delta G = 36000 - 56 \ T;
\]

\[
3\text{WO}_2\text{Cl}_2 \ (тв) \rightleftharpoons 2\text{WO}_3 + \text{WCl}_6 \ (г);
\]

\[
\Delta G = 56000 - 82 \ T;
\]

\[
\text{WO}_2\text{Cl}_2 \ (тв) \rightleftharpoons \text{WO}_2\text{Cl}_2 \ (г),
\]

\[
\Delta G = 23000 - 31 \ T.
\] (4.38) (4.39) (4.40) (4.41) (4.42) (4.43)
Основной составляющей в газовой фазе над твердым \(\text{WO}_2\text{Cl}_2 \) в интервале 288—370°С является \(\text{WOCl}_4 \). Общее давление паров над твердым \(\text{WO}_2\text{Cl}_2 \), по Фунаки [57], описывается уравнением (\(p, \text{мм рт. ст.} \)):

\[
\lg p = 13,55 - 6750/T. \tag{4.44}
\]

Исследование кинетики и механизма возгонки \(\text{WO}_2\text{Cl}_2 \) показало, что этот процесс состоит из двух последовательных стадий [521]: разложения \(\text{WO}_2\text{Cl}_2 \) в твердой фазе по реакции (4.38) и вторичной реакции взаимодействия \(\text{WOCl}_4 \) с \(\text{WO}_3 \) с образованием газообразного \(\text{WO}_2\text{Cl}_2 \). Поэтому возгоны содержат смесь \(\text{WOCl}_4 \) и \(\text{WO}_2\text{Cl}_2 \) в различных соотношениях, а остаток представляет собой \(\text{WO}_3 \). Скорость возгонки лимитируется реакцией разложения \(\text{WO}_2\text{Cl}_2 \), которая относится к топохимическому и имеет порядок, равный двум. Кажущаяся энергия активации \(E = 12,0 \text{ ккал/моль.} \) В интервале температур 350—500°С максимальная степень возгонки составляет 85%. При температурах 450—550°С скорость возгонки достаточно велика для практического использования процесса.

На воздухе \(\text{WO}_2\text{Cl}_2 \) медленно гидролизуется, в воде разлагается с образованием \(\text{H}_2\text{WO}_4 \).

Диоксидихлорид можно получить хлорированием \(\text{WO}_3 \) в смеси с сажей при 526—600°С или действием хлора на \(\text{WO}_2 \) в том же интервале температур [55]. Среди других известных методов получения диоксидихлорида — хлорирование \(\text{WO}_3 \) сухим хлористым водородом при 300—400°С и хлорирование \(\text{WO}_3 \) четыреххлористым углеродом в запаянной ампуле при 310—370°С [22].

Окситрихлорид вольфрама (V)

Окситрихлорид \(\text{WOCl}_3 \) (см. табл. 12) — получен при взаимодействии \(\text{WOCl}_4 \) с алюминиевым порошком в запаянной трубке при 100—140°С [59] и представляет собой оливково-зеленое твердое вещество, слабо парамагнитное. Соединение имеет характерную полосу в ИК-спектре при 796 cm\(^{-1}\), что указывает на присутствие одинарных связей W—O. Решетка тетрагональная (\(a = 10,7 \text{ Å}; c = 3,8 \text{ Å} \)), подобная решетке \(\text{NbOCl}_3 \).

Известны комплексные оксихлориды вольфрама (V) типа \(\text{WOCl}_4^- \). Они образуются в расплаве \(\text{WCll}_6—\text{WO}_2 \) [60], а также при электролизе растворов вольфраматов в концентрированной \(\text{HCl} \) с ртутным катодом. Растворы содержат анионы \(\text{WOCl}_4^- \) и \(\text{WOCl}_3^- \), из которых были выделены в твердую фазу сои \(\text{Me} \) [\(\text{WOCl}_4^- \)] (коричневая) и \(\text{Me}_2 \) [\(\text{WOCl}_3^- \)] (зеленая), где \(\text{Me} = K, \text{Rb}, \text{Cs} \).

Оксидихлорид вольфрама (IV)

Оксидихлорид \(\text{WOCl}_2 \) (см. табл. 12) — синтезирован недавно Тиллаком и др. [61] нагреванием смеси \(W, \text{WO}_3 \) и \(\text{WCll}_6 \) в запаянной трубке при перепаде температур 450—250°С

\[
W + \text{WO}_3 + \text{WCll}_6 = 3\text{WOCl}_2. \tag{4.45}
\]
Образуемый в горячей зоне \(\text{WOCl}_2 \) выделяется в менее нагретой зоне (250° C) в виде золотисто-коричневых иголок.

Другой метод синтеза описан С. С. Елисеевым 1. Метод заключается в восстановлении \(\text{WOCl}_4 \) хлористым оловом в эвакуированной запаянной трубке при 230—240° C с последующей отгонкой \(\text{SnCl}_4 \):

\[
\text{WOCl}_4 + \text{SnCl}_2 = \text{WOCl}_2 + \text{SnCl}_4. \tag{4.46}
\]

Плотность \(\text{WOCl}_3 \) при 25° C составляет 5,92 г/см³. Кристаллическая решетка моноклинная, подобная решетке \(\text{MoCl}_2 \). Параметры решетки: \(a = 12,87 \) Å; \(b = 3,76 \) Å; \(c = 6,46 \) Å; \(\beta = 104,2° \) [61].

Оксидихлорид устойчив на воздухе, нерастворим при комнатной температуре в воде, минеральных кислотах, растворах щелочей и распространенных органических растворителях. При кипячении с азотной кислотой разлагается. При нагревании на воздухе \(\text{WOCl}_2 \) образует \(\text{WO}_2 \text{Cl}_2 \), в вакууме выше 400° C разлагается:

\[
4\text{WOCl}_2 = 2\text{WCl}_2 + \text{WO}_3 + \text{WOCl}_4. \tag{4.47}
\]

4. ХЛОРИРОВАНИЕ ОКИСЛОВ И МИНЕРАЛОВ ВОЛЬФРАМА

Хлорирование окислов вольфрама

Известно, что двукись вольфрама активно реагирует с хлором при 350—400° C, тогда как трехокись вольфрама заметно хлорируется лишь при температуре выше 800° C. В присутствии углерода \(\text{WO}_3 \) хлорируется с высокой скоростью при 500—600° C [51, 55, 56, 63, 64]. Исследование реакций хлорирования окислов вольфрама наиболее распространенным хлорирующим агентом — хлором — представляет интерес для обоснования хлорных процессов вскрытия рудных концентратов и вольфрамосодержащих полупродуктов, а также в связи с возможностью использования хлорного метода для получения соединений вольфрама высокой чистоты. Ниже рассмотрены кинетика и механизм хлорирования окислов вольфрама по данным работы [56]. Кинетику хлорирования \(\text{WO}_2 \) и \(\text{WO}_3 + \text{C} \) хлором изучали гравиметрическим методом на цилиндрических брикетах (с хлором контактировала торцевая сторона брикета) при линейной скорости хлора 3 см/с, что исключало внешнедиффузионные торможения.

Хлорирование двокиси вольфрама. Двукись вольфрама хлорируется с высокой скоростью, начиная с температуры 350° C, когда происходит интенсивная возгонка продукта реакции — диоксихлорида вольфрама:

\[
\text{WO}_2 + \text{Cl}_2 = \text{WO}_2\text{Cl}_2 \quad (g); \tag{4.48}
\]

\[
\Delta G^\circ = -37 000 + 11,3 \; T;
\]

\[
\Delta G^\circ_{400°C} = -29,4 \; \text{kкал}. \tag{4.49}
\]

1 Елисеев С. С. Исследования в области химии хлорпроизводных молибдена, вольфрама, рения и урana. Автореф. докт. дисс. Ташкент, 1974.
При температурах 515—600° C конденсат содержит только один продукт — диоксид хлорид WO₂Cl₂. Однако при температурах 350—515° C конденсат всегда содержит примесь WOCl₄ вследствие протекающей ниже 515° C реакции разложения диоксид хлорида (4.38).

Таблица 14

<table>
<thead>
<tr>
<th>t, °C</th>
<th>Хлорирование WO₂</th>
<th>Хлорирование WO₃ + C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>предельная степень хлорирования, %</td>
<td>состав продуктов хлорирования, %</td>
</tr>
<tr>
<td></td>
<td>WO₂Cl₂</td>
<td>WOCl₄</td>
</tr>
<tr>
<td>350</td>
<td>89,7</td>
<td>87,7</td>
</tr>
<tr>
<td>375</td>
<td>89,8</td>
<td>87,8</td>
</tr>
<tr>
<td>400</td>
<td>90,1</td>
<td>88,1</td>
</tr>
<tr>
<td>425</td>
<td>90,1</td>
<td>88,1</td>
</tr>
<tr>
<td>450</td>
<td>90,1</td>
<td>88,1</td>
</tr>
<tr>
<td>475</td>
<td>89,9</td>
<td>87,9</td>
</tr>
<tr>
<td>500</td>
<td>90,0</td>
<td>88,0</td>
</tr>
<tr>
<td>525—600</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Трехокись вольфрама WO₃. В интервале температур 400—600° C трехокись вольфрама в смеси с углеродом (ламповая сажа) хлорируется с возрастающей скоростью, причем, независимо от количества углерода в шихте, основным продуктом хлорирования является диоксид хлорида.

Как и в случае хлорирования WO₂ до температуры 500° C, наблюдается предельная степень хлорирования WO₃ + C хлором вследствие частичного распада WO₂Cl₂ по реакции (4.38) (см. табл. 14) [56].

Как видно из рис. 23, в интервале низких температур (400—500° C) хлорирование протекает с высокой энергией активации (E = 27,5 ккал/моль), тогда как в интервале 525—600° C энергия активации равна 5,0 ккал/моль, что совпадает с энергией активации хлорирования WO₂. Очевидно, что в интервале 525—600° C
хлорированию предшествует восстановление WO_3 углеродом до WO_2, которое включает две стадии:

$$WO_3 + CO = WO_2 + CO_2; \quad (4.50)$$
$$CO_2 + C = 2CO. \quad (4.51)$$

Из термодинамических расчетов следует, что восстановление WO_3 углеродом до WO_2 возможно при температуре выше $617^\circ C$ (пересечение кривых 2 и 3 на рис. 24). Поскольку, однако, при температуре ниже $1000^\circ C$ значительная часть поверхности угля покрыта углерод-кислородными комплексами (CO_{ads}), скорость реакции (4.51) — отношение CO/CO_2 над углем — снижается. Поэтому реально восстановление WO_3 до WO_2 углем начинается лишь при $782^\circ C$ [66].

В присутствии хлора положение иное. Хлор, CO и CO_2 адсорбируются на угле как акцепторы электронов. Сродство к электрону атома хлора и молекулы CO_2 одинаково ($3,8$ эВ), а у CO, очевидно, значительно ниже. Адсорбируясь на угле, хлор препятствует адсорбции CO — образованию поверхностных комплексов, не влияя на адсорбцию CO_2. В результате концентрация CO в смеси $CO + CO_2$ над углем возрастает. Это подтверждается экспериментально [67]. Кроме того, хлор, являясь инертным разбавителем, смещает равновесие реакции Будуара в сторону увеличения доли восстановителя (CO) в равновесной газовой фазе (кривая 1 на рис. 24).

Сопоставление кривых 1 и 2 на рис. 24 показывает, что в присутствии хлора восстановление WO_3 до WO_2 углем термодинамически возможно уже при достаточно низких температурах.
Анализируя сказанное выше, можно заключить, что во всем интервале температур 400—600°С хлорирование трехокиси вольфрама в присутствии угля включает две основные последовательные стадии: 1) восстановление трехокиси углем до двуокиси; б) хлорирование двуокиси хлором с образованием диоксидихлорида.

В интервале температур 400—500°С разность равновесных давлений CO над углям и над окислом невелика, и скорость хлорирования определяется скоростью восстановления, точнее адсорбции CO₂ на углях, энергия активации которой составляет, по литературным данным, 27,0 ккал/моль, что близко совпадает со значением энергии активации для реакции хлорирования трехокиси вольфрама в интервале 400—500°С (27,5 ккал/моль).

С увеличением температуры растет скорость реакции Будуара (и соответственно скорость восстановления WO₃ до WO₂ и процесса хлорирования). В связи с этим в интервале температур 525—600°С лимитирующей стадией процесса становится взаимодействие двуокиси вольфрама с хлором, для которого характерно значение энергии активации, 5,0 ккал/моль.

При более высоких температурах (800—1000°С) и избытке углерода в шихте в продуктах хлорирования WO₃ появляется гексахлорид. Однако и в этом случае преобладают оксихлориды вольфрама [68, 69].

Поведение примесей при хлорировании окислов вольфрама

Поведение примесей при хлорировании окислов и перегонке диоксидихлорида с целью выявления возможности использования метода для глубокой очистки трехокиси вольфрама изучалось А. Н. Зеликманом и Ю. М. Дмитриевым [55, 65]. Опыты проводились на установке из кварца с единым временной загрузкой брикетов WO₂ массой 250 г и смеси WO₃ + С массой 220 г. В работе использовали трехокись вольфрама обычной чистоты (табл. 15).

Двуокись вольфрама получали восстановлением WO₃ влажным водородом при 650°С.

Были приняты необходимые меры предосторожности для исключения загрязнения продуктов при их хранении, переработке и подготовке пробы к анализу, использовали особочистую воду с удельным электросопротивлением 10—15 МΩ·см. При хлорировании и возгонке оксихлорида в некоторых случаях отмечалось увеличение содержания кремния, связанное с возможностью частичного взаимодействия паров оксихлоридов со стенками кварцевого аппарата.

При хлорировании WO₃ в смеси с сажей при 525°С очистка исходной WO₃ от примесей практически не происходит (см. табл. 16), при последующей возгонке диоксидихлорида заметная очистка достигается лишь от примесей Na, K, Cu.

Между тем при хлорировании двуокиси вольфрама содержа
Таблица 15

<table>
<thead>
<tr>
<th>Продукты</th>
<th>Содержание примесей (\cdot 10^4), % по отношению к W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
</tr>
<tr>
<td>Исходная WO₃</td>
<td>14</td>
</tr>
<tr>
<td>WO₂Cl₂, полученный хлорированием WO₃ с сажей при 525°С</td>
<td>13</td>
</tr>
<tr>
<td>Оксихлорид, полученный хлорированием WO₂ при 525°С</td>
<td>13</td>
</tr>
<tr>
<td>WO₃, полученная по предложенной схеме из исходной WO₃ через WO₂ и оксихлорид</td>
<td><14</td>
</tr>
<tr>
<td>WO₃, полученная двойной переработкой исходной WO₃ по предложенной схеме через WO₂ и оксихлорид</td>
<td>5</td>
</tr>
</tbody>
</table>

Очистка. Очистка трубочек вольфрама по описанным способом позволяет получить продукт с содержанием примесей 0,001 % (см. табл. 4). Другой способ — получение продукта при введении окислителя в аммиачную воду — также допустим. В процессе получения WO₃ в присутствии окислителя WO₃ остаётся после дальнейшей переработки. В чистом виде оксид WO₃ остается после перегонки аммиака от WO₃. Очистка трубочек вольфрама способом, описаным в таблице, позволяет получить продукт с содержанием примесей 0,001 %.

Все примеси, кроме Fe, Al, Si, Mo и As, могут быть удалены путем перегонки меркантильных концентратов в присутствии окислителя. Фотоокисление окислов вольфрама и их соединений в присутствии окислителей может быть использовано для очистки и сокращения содержания примесей в присутствии вольфрама.
Хлорирование шеелитовых
и вольфрамитовых концентратов и полупродуктов

Предложены и исследованы процессы извлечения вольфрама из рудного сырья, основанные на хлорировании различными хлорирующими агентами: хлором, хлористым водородом, четыреххлористым углеродом, хлоридами серы и др. [70, 71]. До настоящего времени эти процессы, однако, не используются в промышленной практике. Они представляют интерес применительно к труднообогатительным вольфрамовым рудам, промпродуктам и хвостам обогащения, а также комплексным вольфрамо-оловянным и вольфрамо-молибденовым промпродуктам.

Ниже рассмотрены данные исследований последнего времени по хлорированию шеелитовых и вольфрамитовых концентратов хлором как наиболее доступным хлорирующим агентом. Представляет интерес хлорирование хлоридами серы [72]. Однако в этом случае используются два реагента — хлор и сера. Хлорирование хлором в смеси с хлоридами серы можно проводить при температурах 300—400° С, что на 200—300° С ниже температуры хлорирования хлором в присутствии углерода. Однако это преимущество не столь существенно и не компенсирует более высокой стоимости реагентов.

Хлорирование вольфрамита. По данным Покорного [73], вольфрамит взаимодействует с хлором с заметной скоростью при 500—600° С. При 800—900° С минерал хлорируется полностью. Из этого следует, что вольфрамит реагирует с хлором активней, чем трехокись вольфрама, что объясняется катализирующим действием хлорида железа. При введении углерода в шихту реакция хлорирования вольфрамита начинается при 400° С и быстро протекает при 500—600° С. При этих температурах вольфрам и железо удаляются в виде хлоридов в равной степени, а хлорид марганца удаляется лишь частично. При 800—850° С хлорид марганца полностью переходит в газовую fazu.

Н. А. Белозерский и О. Д. Кричевская [74] изучали хлорирование губнеритового концентратов (56,2% W; 15,2% Mn; 3,4% Fe) на установке с диаметром трубы квадратного хлоратора 225 мм и высотой 1000 мм. Измельченный концентрат в смеси с древесным углем (пропорция 3 : 1) и связующим (сульфидно-целлюлозный щелок) брикетировали (диаметр брикетов 25, высота 25—35 мм), сушили и прокаливали при 600—700° С. Брикеты хлорировали при 800—900° С. При 900° С полное хлорирование достигалось за ~3 ч. Образующиеся хлориды улавливались в трех последовательно установленных конденсаторах. Конденсат содержал окситетрахлорид с небольшим количеством гексахлорида вольфрама и хлорное железо. Большая часть MnCl₂ остается в твердом остатке при хлорировании брикетов в шахтном слое.

Для очистки хлоридов вольфрама от железа парогазовую смесь пропускали через колонку, заполненную кусками поваренной
соли (см. с. 96). После солевого фильтра содержание железа не превышало 0,02%.

Как показано в работе [75], перевод WOCl4 в WCl6 пропусканием смеси оксихлорида и хлора через слой древесного угля протекает эффективно при температурах 900—1000°С. Полное превращение при 1000°С достигается приблизительно за время контакта, равное 10 с.

Хлорирование шеелита. По данным Гендерсона с сотр. [76], шеелит в смеси с углем взаимодействует с хлором с достаточной скоростью при 450°С. Зависимость степени хлорирования от температуры имеет сложный характер. Высокие степени хлорирования (извлечение ~95% в летучие хлориды) наблюдаются при 500°С и выше 700°С. Резкое снижение извлечения наблюдается в промежуточной температурной области 550—650°С. По всей вероятности, торможение хлорирования в этой области температур обусловлено покрытием частиц шеелита пленками хлорида кальция.

Авторы полагают, что в процессе хлорирования шеелита протекают следующие реакции:

\[
\begin{align*}
\text{CaWO}_4 + \text{C} + 2\text{Cl}_2 &= \text{CaCl}_2 + \text{WO}_2\text{Cl}_2 + \text{CO}_2; \\
\text{CaWO}_4 + 3/2\text{C} + 3\text{Cl}_2 &= \text{CaCl}_2 + \text{WOCl}_4 + 3/2\text{CO}_2; \\
2\text{WO}_2\text{Cl}_2 &= \text{WOCl}_4 + \text{WO}_3; \\
\text{WO}_3 + \text{CaCl}_2 &= \text{WO}_2\text{Cl}_2 + \text{CaO}; \\
3\text{WO}_2\text{Cl}_2 + \text{CaCl}_2 &= \text{CaWO}_4 + 2\text{WOCl}_4.
\end{align*}
\]

Было установлено, что добавки небольших количеств CaF2 в шихту (3—6%) ведут к повышению извлечения вольфрама. С хлористым кальцием фторид кальция образует межгаллойдную соль CaClF.

Парогазовую смесь, содержащую оксихлориды вольфрама, хлорид железа и примеси других хлоридов, пропускали через колонку с NaCl, нагретую до 500°С. Конденсат оксихлоридов содержал лишь следы примесей.

Если в исходном вольфрамовом концентрате присутствуют минералы молибдена, в процессе хлорирования молибден образует оксихлорид MoO2Cl2 (температура возгонки 156°С). Установлена принципиальная возможность раздельной конденсации оксихлоридов вольфрама (при температурах конденсаторов 230 и 150°С) и диоксидихлорида молибдена (при температуре конденсатора 25°С).

А. Н. Зеликман, С. Л. Стефанюк и др. [77] исследовали хлорирование шеелито-повеллитового промпродукта состава, %: 33,8W; 2,88Mo; 14,5CaF2; 19,8 CaO. В отсутствие углерода заметное хлорирование концентрата наблюдалось при 800°С, в смеси с нефтяным коксом начало хлорирования отмечается при 280°С и протекает с высокой скоростью выше 670°С. При
более низких температурах наблюдается торможение процесса, обусловленное образованием пленок CaCl₂. С повышением температуры образуются эвтектические расплавы в системе CaCl₂—CaWO₄, что приводит к разрушению пленки и снижению торможения. Кинетика хлорирования изучалась на брикетах, приготовленных из смеси, содержащей 70% концентраата, 20% кокса и 10% каменноугольного пека. Брикеты коксования при 900°С. Образующийся при хлорировании расплав CaCl₂ и CaF₂ ниже 700°С блокирует поверхность частиц минерала и углерода и тормозит протекание процесса. При более высоких температурах увеличивается жидкотекучесть расплава, и происходит выплавление расплава из брикетов. Степень хлорирования достигает 100%. Из этого следует, что хлорирование брикетов шелит с коксом в промышленных масштабах можно проводить в шахтном кло- раторе, в котором обеспечивается накопление и вывод расплава хлоридов и фторидов кальция. Фракционной дистилляцией или разгонкой возгонов в токе азота в интервале температур 150—300°С не удавалось достаточно полно разделить оксихлориды молибдена и вольфрама. В связи с этим авторы рекомендуют ввести операцию превращения оксихлоридов в высшие хлориды (пропусканием паров через нагретую угольную насадку в потоке хлора) и последующее разделение WCl₆ и MoCl₅ ректификацией [40].

5. ФТОРИДЫ И ОКСИФТОРИДЫ ВОЛЬФРАМА

Из фтористых соединений вольфрама наиболее полно изучены гексафторид и оксифториды вольфрама (VI): WOF₄ и WO₃F₂. В меньшей степени исследованы свойства WF₄. Простые фториды низших степеней окисления, а также пентафторид неизвестны. Фтористые соединения этих степеней окисления стабилизируются только при образовании комплексных солей.

Ниже рассмотрены имеющие практическое значение фтористые соединения шестивалентного вольфрама.

Гексафторид вольфрама

Свойства. Гексафторид вольфрама — при обычных условиях бесцветный газ, дымящий на воздухе и конденсирующийся при 17,1°С в жидкость, которая при 30°С переходит в твердое состояние [8]. Твердый WF₆ — вещество белого цвета, имеющее две полиморфные модификации. В интервале температур от 2 до —8,2°С устойчива форма с кубической гранецентрированной решеткой, \(a = 6,28 \pm 0,02 \text{Å} \) [78], ниже —8,2°С гексафторид имеет орторомбическую структуру с параметрами при —20°С: \(a = 9,68 \pm 0,02 \text{Å}; b = 8,81 \pm 0,02 \text{Å}; c = 5,09 \pm 0,02 \text{Å} \) [78]. Плотность твердого WF₆ составляет 4,56 г/см³ (20°С), жидкого 3,99 г/см³ (0°С) [78].
Молекула WF_6 в па́рах име́ет октаэдрическую симметрию. Расстояние между атомами W—F равно 1,82 Å.

Основные термодинамические свойства WF_6 приведены в табл. 16.

Давление пара над твердым WF_6 описывается уравнениями (p в мм рт. ст.) [9]:

в интервале от -60 до $-8,2^\circ$C:
$$\lg p = 9,951 - 2000,6/T;$$
(4.57)

в интервале от $-8,2$ до $+2,0^\circ$C
$$\lg p = 8,758 - 1689,9/T.$$
(4.58)

Давление пара над жидким WF_6 в интервале 2—17,1°C описывается уравнением (p в мм рт. ст.) [9]:
$$\lg p = 7,7635 - 1380,5/T.$$
(4.59)

Критическая температура гексафторида равна 178,2 ± 0,5°C; критическое давление 46,3 ± 0,5 ат [79].

Гексафторид вольфрама гидролитически разлагается во влажном воздухе. Гидролиз в воде приводит к образованию оксифторидов и в качестве конечного продукта — осадков вольфрамовой кислоты. Гексафторид растворяется в плавиковой кислоте (растворимость равна 3,14 моль/л [80]), растворах щелочей, аммиака и в растворах фторидов щелочных металлов. В последнем случае образуются растворы оксифторокомплексов, например Me_2WOF_6 и др.

При контакте паров WF_6 с фторидами щелочных металлов образуются комплексные соли типа Me_nWF_{6+n} (где $n = 1,2$). Для реакции

$$WF_6 + 2NaF \rightleftharpoons Na_2WF_8$$
(4.60)

установлена следующая зависимость равновесного давления пара от температуры (p в мм рт. ст.) [8]:
$$\lg p = 8,80 - 3990/T.$$
(4.61)

Атмосферное давление достигается при температуре 402°C. Следовательно, при низких температурах (100—200°C) можно поглощать WF_6, пропуская его пары через колонку, заполненную NaF, а нагревая Na$_2$WF$_8$ при температурах выше 400°C, выделить из комплекса WF_6.

Гексафторид энергично реагирует с газообразным аммиаком с образованием твердого вещества — продукта присоединения аммиака — $(NH_3)_4WF_6$. Подобные соединения — аддукты — образуются с бензолом $WF_6\cdot C_6H_6$, пиридином $WF_6(Py)_3$, метиламином $WF_6(CH_3NH_2)_3$ и другими органическими веществами. При растворении WF_6 в органических растворителях получаются ярко окрашенные растворы (в бензоле — красные, в диоксане — коричнево-фиолетовые) [24].
<table>
<thead>
<tr>
<th>Фторид и оксифторид</th>
<th>Температура, °C</th>
<th>Энтальпия образования, (\Delta H^\circ) ккал/моль</th>
<th>Энтальпия испарения, ккал/моль</th>
<th>Энтропия, (S^\circ) кал/(моль·град)</th>
<th>Энтропия сублимации кал/(моль·град)</th>
<th>Энтропия испарения кал/(моль·град)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ж</td>
<td></td>
<td>417,7 [11], 81,8 [18]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г</td>
<td></td>
<td>422 [10]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>416 [10], 411,5 [11, 17]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF₄</td>
<td>T</td>
<td></td>
<td>(250) [20]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г</td>
<td></td>
<td>281 [19]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г</td>
<td>307 [23]</td>
<td>307 [23]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Под давлением 413,2 мм рт. ст.

** Кубическая модификация. Для орторомбической формы (ниже — 8,2° C) \(\Delta H^\circ \) (субл.) = 9,15 [9].
Способы получения. Основной технологический способ получения WF₆ — действие газообразного фтора на вольфрам (порошок, кусковые отходы металла) при температуре 250—300° С в никелевом реакторе. Фторид конденсируют при температурах 5—15° C, получая жидкий WF₆ [81—83]. Реакция взаимодействия фтора с вольфрамом сильно экзотермическая (422 ккал/моль WF₆). Поэтому в укрупненных масштабах фторирование можно проводить без подведения тепла или даже с отводом тепла из зоны реакции.

Для фторирования металла могут быть использованы и другие фторирующие агенты, например трифторид хлора ClF₃ [84]. Однако в этом случае для удаления избыточка реагента полученный гексафторид вольфрама необходимо промыть безводным жидким фтористым водородом, что усложняет технологию.

Практический интерес представляют способы получения WF₆ из WO₃ или вольфраматов (например, CaWO₄).

При действии фтора на WO₃ или CaWO₄ образуются летучие оксифториды (WOФ₄, WО₂F₂), фторирование которых с получением WF₆ протекает относительно медленно и может быть осуществлено при высоких температурах (800—1000° С) и большом времени контакта.

Б. В. Громов с сотр.¹ [87] предложил сравнительно простой способ получения WF₆ из кислородных соединений вольфрама. Способ основан на образовании при контакте паров WOF₄ с NaF комплексных солей NaₙWOФ₄₊ₙ (n = 1, 2 или 3). Последние легко реагируют с фтором при 400—500° С с выделением кислорода и одновременным термическим разложением:

$$Na_2WOF_6 + F_2 \rightarrow 2NaF + WF_6 + \frac{1}{2}O_2.$$ (4.62)

Способ обеспечивает получение WF₆ с содержанием оксифторидов не выше 0,01%. Этот способ можно осуществлять в различных вариантах. Один из них состоит в следующем. Вольфрамат кальция контактируют в шnekовом реакторе с фтором при 420° С. Отходящие газы, содержащие WOF₄ и избыточный фтор, направляются в другой шnekовий реактор, заполненный гранулированным NaF и нагретый до 450° C. В этом реакторе образуется Na₉WOФ₆, который реагирует с фтором по написанной выше реакции (4.62). Пары WF₆ улавливаются при 100° C в колонке, заполненной гранулами NaF, где образуется Na₉WF₆. Термическим разложением последнего при 400—450° C получают чистый WF₆. Чисто препаративное значение имеют описанные в литературе методы получения WF₆, основанные на взаимо-

¹ Громов Б. В., Кошечко Л. Г., Раков Э. Г., Судариков Б. Н. Авт. свид. № 416317. — «Открытия, изобретения, промышленные образцы, товарные знаки», 1974, № 7, с. 69.
действии WCl₄ с HF [89], AsF₅ или SbF₅ [90]; фторировании WO₃ тетрафторидом серы SF₄ [92]; фторировании карбонила W(CO)₆ с помощью IF₅ [93].

Оксифториды вольфрама

Оксифторид вольфрама WOF₄ — белое кристаллическое легколетучее вещество (см. табл. 16).

По данным работы [91], давление пара (p, мм рт. ст.) над твердым и жидким WOF₄ описывается приведенными ниже уравнениями.

Для твердого WOF₄ в интервале 50—104° С:

\[\lg p = 10,96 - 3605/T; \]

для жидкого WOF₄ в интервале 110—186° С:

\[\lg p = 9,69 - 3125/T. \]

Оксифторид гигроскопичен, расплывается на воздухе, легко гидролизуется в воде. Растворим в CHCl₃ и абсолютном спирте, мало растворим в CCl₄ и CS₂. На холоду WOF₄ реагирует с газообразным аммиаком с образованием оранжевого аддукта WOF₄·0,5NH₃.

С фторидами щелочных металлов WOF₄ образует комплексы MeₙWOF₄⁺n (n = 1, 2, 3).

Оксифторид является одним из продуктов при фторировании фтором или HF кислородных соединений вольфрама (WO₃, CaWO₄ и др.). Препаративные методы получения чистого WOF₄ следующие: действие HF на WOCl₄ [90]; действие смеси фтора с кислородом на вольфрам при повышенных температурах [91]; действие CCl₂F₂ на WO₂ при 525°С [94].

Известны комплексные пероксофториды вольфрама (VI), образующиеся при добавлении перекиси водорода в растворы, содержащие оксифторанионы.

Так, например, выделены из растворов соли K₂[WO(O₂)F₄], K₂[W(O₂)₂F₂] и изучено их строение [96].
ГЛАВА V

ВОССТАНОВЛЕНИЕ ВОЛЬФРАМА ИЗ РАЗЛИЧНЫХ СОЕДИНЕНИЙ

Известны следующие способы получения вольфрама из его соединений.
1. Восстановление трехокиси вольфрама водородом.
2. Восстановление трехокиси вольфрама или вольфраматов (CaWO₄ и др.) углеродом.
3. Восстановление галогенидов (WF₆, WCl₆) водородом.
4. Металлолтермическое восстановление окислов или вольфраматов (магнием, алюминием и др.).
5. Термическая диссоциация карбонила вольфрама.
6. Электролитическое получение вольфрама в расплавленных средах.

Наиболее распространен в промышленной практике способ восстановления WO₃ водородом. Получаемый в результате восстановления порошкообразный вольфрам используют для производства компактного металла, получения карбida вольфрама и ряда сплавов. Порошки вольфрама, восстановленные из WO₃ углеродом, непригодны для производства пластичного вольфрама, так как они содержат включения его карбидов, что приводит к хрупкости и ухудшению обрабатываемости заготовок. Порошки углеродного восстановления иногда используют в производстве твердых сплавов (для получения карбida вольфрама), однако в этой области предпочтительно применять вольфрам водородного восстановления. Разработаны и начинают применяться методы получения порошков вольфрама восстановлением водородом паров галогенидов. Получаемые при этом порошки с различной крупностью частиц (тонкодисперсные или крупные сферические порошки) отличаются высокой чистотой, в частности низким содержанием кислорода.

Метод термической диссоциации карбонила, а также восстановление галогенидов водородом используются для получения вольфрамовых покрытий на других металлах, графите или изделиях из керамики. Металлолтермические способы получили распространение преимущественно в производстве ферровольфрама. Электролитические способы получения вольфрама неоднократно исследовались и продолжают изучаться. Однако они в настоящее время еще не нашли практического применения.

1. ОКИСЛЫ ВОЛЬФРАМА

В системе вольфрам—кислород достоверно установлено существование четырех окислов вольфрама [1—5]: трехокиси WO₃, промежуточных окислов W₁₀O₅₈ или WO₂₀, (β-окисел), W₁₈O₄₉.
или $WO_{2.72}$ (γ-окисел) и двуокиси WO_2 (δ-окисел). Упоминаемый в литературе промежуточный окисел W_4O_{11} (или $WO_{2.75}$) в действительности имеет состав $WO_{2.72}$, а образование окисла W_2O_5 (или $WO_{2.5}$) не подтверждено. Нет также подтверждения существования окислов в интервале составов WO_2 — W, таких как W_5O_{9}, WO, W_4O_3. По всей вероятности, они представляют собой смеся WO_2 и W [14]. Существование окисла W_3O является дискуссионным.

<table>
<thead>
<tr>
<th>Цвет оксида</th>
<th>Область гомогенности</th>
<th>Постоянные решетки, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>В</td>
<td>С</td>
</tr>
<tr>
<td>Синие кристаллы в форме игл</td>
<td>WO${2.9}$ — WO${2.83}$ [7, 9]</td>
<td>7.15</td>
</tr>
<tr>
<td>Красно-фиолетовые кристаллы</td>
<td>WO${2.72}$ — WO${2.48}$ [12]</td>
<td>7.72</td>
</tr>
<tr>
<td>Темно-коричневый порошок</td>
<td>WO${2.43}$ — WO${2}$ [16]</td>
<td>11.05</td>
</tr>
</tbody>
</table>

Примечание. Рассмотренные оксиды имеют моноклинную сингонию.

* При небольшой потере кислорода (WO$_{2.98}$) приобретает синий цвет.
Структура окислов вольфрама

Во всех окислах атом вольфрама окружен шестью атомами кислорода, расположенными в вершинах октаэдра. Структуру окислов вольфрама можно наглядно описать, рассматривая ее как состоящую из различно соединенных координационных полиэдров — октаэдров. Возможно сочленение только ребрами, только вершинами или теми и другими.

При соединении только ребрами образуется плотнейшая кубическая упаковка. В этом случае каждый атом кислорода принадлежит одновременно шести октаэдрам. Следовательно, отношение \(n_{Me} : n_O = 1 : 1 \). Если октаэдры соединены только вершинами, каждый атом кислорода принадлежит двум октаэдрам: \(n_{Me} : n_O = 1 : 3 \); когда октаэдры соединены ребрами, и вершинами могут быть получены окислы с отношением \(n_{Me} : n_O \) от 1:1 до 1:3, т. е. со средней валентностью от 2 до 6 [5], соответствующей промежуточным окислам вольфрама.

Во всех окислах вольфрама октаэдры в большей или меньшей степени деформированы, что приводит к снижению симметрии решетки. В табл. 17 приведены данные о структуре и некоторых свойствах окислов вольфрама.

Трехокись вольфрама. Структура \(\text{WO}_3 \) построена по типу \(\text{ReO}_3 \), в которой октаэдры \(\text{MeO}_6 \) соединены только вершинами. В случае геометрической правильности октаэдров \(\text{WO}_3 \) имела бы кубическую сингонию. Однако сильная деформация октаэдров приводит к снижению симметрии. Вследствие этого сингония \(\alpha-\text{WO}_3 \) — моноклинная, с малыми отклонениями от кубической решетки [1, 5, 6] (рис. 26). Параметры решетки \(\alpha-\text{WO}_3 \) представлены в табл. 17. Окисел \(\text{WO}_3 \) может существовать в нескольких модификациях, близких к описанной выше структуре. Низкотемпературной является моноклинная \(\alpha-\text{WO}_3 \). Относительно сингонии других модификаций и областей их существования данные противоречивые. Так, Магнели считает, что моноклинная модификация \(\alpha-\text{WO}_3 \) устойчива до 740° С, выше этой температуры существует тетрагональная модификация \(\text{WO}_3 \) [11]. Перри, Банкс и Пост [17], изучавшие структурные превращения \(\text{WO}_3 \) в интервале 20—1000° С с помощью рентгеновского дифрактометра, обнаружили плавный переход при 300° С моноклинной решетки в орторомбическую, а при 720° С резкий переход последней.
в тетрагональную. По данным Уeda и Ишикава в интервале 20—700 °C устойчива орторомбическая форма, выше 700—720 °C — тетрагональная с параметрами \(a = b = 7,20 \) Å, \(c = 3,77 \) Å. Выше 1100 °C тетрагональная решетка переходит в кубическую [18].

И. А. Васильева, Я. И. Герасимов и Ю. П. Симанов [19] на основе рентгеноструктурного анализа образца \(\text{WO}_3 \) после прокалив. при 800—900 °C с быстрым охлаждением пришли к заключению, что модификация, устойчивая в интервале температур 720—1100 °C, имеет ромбическую, а не тетрагональную сингонию с параметрами \(a = 7,29 \) Å; \(b = 7,48 \) Å; \(c = 3,83 \) Å; \(\alpha = \beta = \gamma = 90^\circ \), близкими к найденным в работе [7]. После отжига при 650 °C и медленного охлаждения высокотемпературная модификация \(\beta \)-\(\text{WO}_3 \) переходит в моноклинную с параметрами, определенными Магнели [1].

Из опубликованных работ следует, что \(\text{WO}_3 \) существует по меньшей мере в трех модификациях:

моноклинной \(\alpha \)-\(\text{WO}_3 \) (устойчива до 720 °C), тетрагональной (или возможно ромбоэдрической) \(\beta \)-\(\text{WO}_3 \) (устойчива в интервале 720—1100 °C) и, по всей вероятности, кубической (устойчива выше 1100 °C). Возможно, существует плавный переход при 300 °C моноклинной формы в орторомбическую. Трудности однозначного определения типа структуры обусловлены низкой сингонией решетки. Динамика структурных превращений решетки \(\text{WO}_3 \) в интервале температур от —180 до +290 °C рассмотрена в публикации [13].

Синий \(\beta \)-окисел вольфрама \(\text{WO}_{2.5} \). Синий окисел был впервые синтезирован Глеммером и Заузером [16], его структура расшифрована Магнели [8]. Структура построена из октаэдров \(\text{WO}_6 \), сочлененных вершинами и ребрами. Идеализированная структура показана на рис. 27. Октаэдры \(\text{WO}_3 \) образуют между собой большие звенья (или блоки), число октаэдров в которых равно 20. В звеньях октаэдры соединяются только вершинами. Три последних октаэдра первого звена соединяются ребрами с тремя первыми октаэдрами второго звена (см. рис. 27). Октаэдры соседних звеньев соединены друг с другом вершинами. Вдоль оси \(b \) октаэдры также соединяются вершинами (слой плотно сидит на слое). Таким образом, в каждой элементарной ячейке содержится две характерные группы из шести октаэдров, сочлененных только ребрами. Параметры ячейки даны в табл. 17. Ниже приведены расстояния между атомами, Å:

\[
\begin{align*}
W—W: \\
\text{в октаэдрах, соединенных вершинами} & 3,75—3,86 \\
\text{в октаэдрах, соединенных ребрами} & 3,28—3,33
\end{align*}
\]

\[
\begin{align*}
W—O & 1,90 \\
O—O & 2,6
\end{align*}
\]

Фиолетовая окись \(\text{WO}_{2.72} \) (\(\gamma \)-окисел). Структура окисла резко отличается от структуры всех других окислов вольфрама, так
как построена из сильно деформированных октаэдров, сочленение которых усложнено. Структура относится к семейству «полигонных структур». Как видно из рис. 28, в структуре имеются элементы, составленные из сочленения вершинами шести, четырех

![Diagram](image)

Рис. 27. Сочленение октаэдров в структуре WO$_2$. В направлении, указанном штриховой стрелкой, звенья имеют ширину 20 октаэдров. Проекции «кладчатых» поверхностей, разделяющих отдельные блоки, показаны пунктиром

и трех искаженных октаэдров, а также цепочки из четырех октаэдров, сочлененных ребрами. На рис. 28 показан один слой октаэдров. Другой слой стоит на первом, причем октаэдры слоев соединяются только вершинами [12, 5].

Расстояния между атомами в структуре, Å:

- W—W:
 - в октаэдрах, соединенных вершинами: 3,62—3,96
 - в октаэдрах, соединенных ребрами: 2,60
 3,31—3,34

- W—O: ... 1,90—1,85
- O—O: ... 2,6

Двуокись вольфрама WO$_2$ (δ-окисел). Структура двуокиси вольфрама сходна со структурой рутила, но в отличие от последнего элементарная ячейка не тетрагональная, а моно克莱нная (рис. 29). Шесть атомов кислорода располагаются в вершинах деформированного октаэдра, причем только половина октаэдрических пустот занята атомами вольфрама. Октаэдры WO$_6$ соединены друг с другом ребрами, образуя бесконечные цепи. Октаэдры соседних цепей сочленены вершинами.
В двуокиси вольфрама из-за двух свободных валентных электронов у атома вольфрама возникают дополнительные связи, приводящие к искажению правильной структуры, присущей рутени. Атомы вольфрама в соседних октаэдрах попарно сближаются (смещаются от центров октаэдров), образуя зигзагообразные линии. При этом смещаются также и атомы кислорода, что ведет к деформации октаэдра. Общие ребра октаэдов (расстояния O—O) увеличены [5]. Расстояния между атомами в решетке, Å:

\[
\begin{align*}
W—W: & \quad 3,71—3,73 \\
W—O & \quad 2,52—3,13 \\
O—O & \quad 1,90—2,1 \\
& \quad 2,7—2,9; \\
& \quad 3,10
\end{align*}
\]

Фазы в области \(\text{WO}_2—\text{W} \); природа фазы \(\beta-\text{W} \). Как уже отмечалось, в области системы \(\text{WO}_2—\text{W} \) не установлены окисные фазы. Остаётся дискуссионным лишь вопрос о существовании окисла \(\text{W}_3\text{O}_6 \), отождествляемого некоторыми исследователями с \(\beta-\text{вольфрамом} \).

Известна лишь одна устойчивая модификация вольфрама \(\alpha-\text{вольфрам} \) с кубической пространственно-центрированной решеткой \((a = 3,1589 \text{ Å}) \). В 1931 г. при получении вольфрама электролизом из фосфатных расплавов была обнаружена новая аллотропическая форма \(\beta-\text{W} \) с кубической решеткой иного типа \((a = 5,04 \text{ Å}) \), которая выше 650°С переходит в \(\alpha-\text{W} \) [20, 21]. Обратный переход не наблюдается. В последующих работах было показано, что \(\beta-\text{W} \) получается также при восстановлении \(\text{WO}_3 \) сухим водородом при температурах 440—630°С [22].

На рис. 30 сопоставлены структуры \(\alpha-\text{W} \) и \(\beta-\text{W} \). Структура \(\alpha-\text{W} \) относится к пространственной группе \(0^6_n—Jm3m \) \((Z = 2, \)
координационное число равно 8); пространственная группа β-W: O₉₀⁻Pm3n (Z = 0, координационные числа для W₁ и W₁₁ равны соответственно 12' и 14). Высокие координационные числа решетки β-W сближают ее со структурами типа плотнейшей кубической упаковки.

Последующие работы Мильнера с сотр. [24, 25], Филлипса и Чанга [42] не подтвердили идентичность β-W и субоксида W₃O. Авторы [24, 25] получили β-W, практически свободный от примеси кислорода, его плотность оказалась равной 19,12 г/см³ (теоретическая плотность β-W равна 19,8 г/см³). Переход β-W → → α-W при нагревании образца в водороде проходил без изменения массы (что наблюдалось бы, если бы β-W представлял собой окисел). Далее было установлено, что параметры решетки β-W не изменяются при поглощении кислорода. Все приведенные данные позволяют заключить, что β-W — это чистый металл. Однако обязательным условием образования β-W является присутствие незначительной примеси кислорода. Так, для этого достаточно 0,05 атомов кислорода на атом вольфрама [или 0,004% (по массе)]. Этот кислород может быть удален (в виде H₂O, CO₂) без перехода β-W в α-W. Исследования показали, что β-структура может быть стабилизирована не только кислородом, но и другими веществами, например фосфорной кислотой, хлористым калием.

Рис. 30. Структура α-вольфрама (a) и β-вольфрама (b):

1 — W₁; 2 — W₁₁
Исходя из этого авторы [24] рассматривают β-W как металл с нарушенной структурой, состоящей только из атомов вольфрама, в то время как молекулы примесей, вызывающих нарушение, располагаются по границам мельчайших частиц β-W.

Строго говоря, β-W не может, однако, рассматриваться как аллотропическая модификация вольфрама по следующим причинам: 1) β-W образуется только в присутствии примесей; 2) превращение β → α необратимо, что при аллотропии встречается весьма редко; 3) температура превращения β → α изменяется в широких пределах (от 520 до 820° C) в зависимости от содержания примесей, тормозящих переход.

Наблюдаемую пирофорность β-W авторы [25] связывают с представлением о наличии в его решете атомов вольфрама с особой конфигурацией электронов (атомы W *) и рассматривают β-W как интерметаллическое соединение W₃*W.

Термодинамические свойства окислов вольфрама

В табл. 18 приведены термодинамические функции окислов вольфрама по данным более поздних работ (1957—1967 гг.). Энталпии и свободные энергии Гиббса для твердых фаз определяли на основе исследования равновесия реакций восстановления водородом [15, 26, 27, 35], сжигания в превизионном калориметре [33], определения э. д. с. в ячейке с твердым электролитом [28, 30].

Сопоставление значений свободной энергии Гиббса, полученных различными авторами, сделано в работе Риззо с сотр. [28].

Термодинамические функции для окислов в паровой фазе получены на основе данных о давлении и составе паровой фазы над окислами вольфрама [36].

Данные табл. 19 показывают, что энтропии образования окислов в твердой фазе, за исключениемWO₂, близки (значения ΔS лежат в пределах 58,4—51,4 кал). Это объясняется близостью кристаллических решеток WO₃, WO₂₉, и WO₂₋₇₂.

Из приведенной на рис. 31 зависимости \(\Delta G^0 = f (T) [15] \) можно видеть, что линии равновесияWO₂—WO₂₋₇₂ и WO₂₋₇₂—WО₂₉, пересекаются при 585° C. Ниже этой температуры WO₂₋₇₂ нестабилен и возможно сосутавление WO₂₋₇₂ и WO₂. Анало-
<table>
<thead>
<tr>
<th>Оксид</th>
<th>Агрегатное состояние</th>
<th>$-\Delta H_{298K}$ ккал/моль</th>
<th>S_{298K} ккал/(моль·град)</th>
<th>$-\Delta G_{298K}$ ккал/моль</th>
<th>$\Delta G^o = \int f(T)$, ккал/моль</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-WO$_3$</td>
<td>K</td>
<td>203,0 [26]</td>
<td>20,0 [26]</td>
<td>184,7 [26]</td>
<td>$\Delta G^o = -201500 - 10,2 T \lg T + 91,7 T$ [29]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202,8±1,4 [27]</td>
<td>19,1±1,4 [27]</td>
<td>183,2 [27]</td>
<td>(298–1400 K, точность ±5 ккал)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>199±1 [33]</td>
<td></td>
<td></td>
<td>$\Delta G^o = -199152 + 58,44 T$ [28]</td>
</tr>
<tr>
<td>WO$_{2,9}$</td>
<td>K</td>
<td>193,1±1,4 [27]</td>
<td>23,6±1,4 [27]</td>
<td>176,6 [27]</td>
<td>(973–1273 K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193±1 [33]</td>
<td></td>
<td></td>
<td>$\Delta G^o = -192476 + 55,76 T$ [28]</td>
</tr>
<tr>
<td>WO$_{2,72}$</td>
<td>K</td>
<td>180,3±1,4 [27]</td>
<td>25,0±1,4 [27]</td>
<td>163,1 [27]</td>
<td>(973–1273 K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>183±1 [33]</td>
<td></td>
<td></td>
<td>$\Delta G^o = -180260 + 51,4 T$ [28]</td>
</tr>
<tr>
<td>WO$_2$</td>
<td>K</td>
<td>134,0±0,7 [27]</td>
<td>19,7±1 [27]</td>
<td>122,8 [27]</td>
<td>(973–1273 K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>137±1 [33]</td>
<td></td>
<td></td>
<td>$\Delta G^o = -131600 + 136,6 T$ [29]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136,6±2 [39]</td>
<td></td>
<td></td>
<td>(298–1500 K, точность ±5 ккал)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>133,0 [35]</td>
<td></td>
<td></td>
<td>$\Delta G^o = -137320 + 40,62 T$ [28]</td>
</tr>
<tr>
<td>W$_2$O$_4$</td>
<td>Г</td>
<td>278,2±10 [41]</td>
<td>19,5 [35]</td>
<td></td>
<td>(973–1273 K)</td>
</tr>
<tr>
<td>W$_3$O$_9$</td>
<td>Г</td>
<td>278,2±10 [41]</td>
<td>(99,3) [41]</td>
<td></td>
<td>(1300–1600 K)</td>
</tr>
<tr>
<td>W$_4$O$_9$</td>
<td>Г</td>
<td>483,6±10 [41]</td>
<td>(120,6) [41]</td>
<td></td>
<td>(1300–1600 K)</td>
</tr>
<tr>
<td>W4O${12}$</td>
<td>Г</td>
<td>670,2±10 [41]</td>
<td>(144,6) [41]</td>
<td></td>
<td>(1300–1600 K)</td>
</tr>
</tbody>
</table>

* $C_p = 16,356 + 10,67 \cdot 10^{-3} T$ [26] (C_p ккал/(моль·град); $C_p = 17,48 + 6,79$ [29].

** $C_p = 15,49 + 3,58 \cdot 10^{-3} T - 2,8 \cdot 10^5 T^{-2}$ [34].
гично этому линии равновесия \(\text{WO}_2 - \text{WO}_{2.9} \) и \(\text{WO}_{2.9} - \text{WO}_3 \) пересекаются при 485° С, ниже этой температуры возможно сосуществование \(\text{WO}_2 \) и \(\text{WO}_3 \). Эти данные использованы при построении диаграммы вольфрам—кислород (рис. 25).

Согласно приведенной на рис. 25 диаграмме фазового равновесия \(W - O \) фаза \(\text{WO}_2 \) стабильна до 1530 ± 5° С. Выше этой температуры происходит диспропорционирование \(\text{WO}_2 \) на \(W \) и \(\text{WO}_{18} \text{O}_{49} \) (или \(\text{WO}_{2.72} \)). Фаза \(\text{WO}_{2.72} \) остается стабильной при 1700° С (максимальная температура стабильности не установлена). Фаза \(\text{WO}_{2.9} \text{O}_{58} \) (или \(\text{WO}_{2.96} \)) стабильна до 1550° С, при более высокой температуре образуется жидкость фаза. Поскольку \(\beta - W \) не является устойчивой аллотропической модификацией вольфрама, на диаграмме состояния эта фаза не отмечена.

Сасвари показал, что диспропорционирование \(\text{WO}_2 \) протекает уже при 900° С в атмосфере аргона. Распад происходит через образование окислов \(\text{WO}_{2.72} \) \(\rightarrow \) \(\text{WO}_{2.9} \) \(\rightarrow \) \(\text{WO}_3 \). При помещении слоя \(\text{WO}_2 \) на платиновую пластинку при 900° С в конечном итоге получается два слоя: нижний слой вольфрам, верхний \(\text{WO}_3 \) [32].

Трехокись вольфрама плавится без разложения при температуре 1472° С, точка кипения \(\sim 1850° \) С [29].

Исследования состава и давления пара над окислами вольфрама, выполненные эффициентным методом с использованием масс-спектрометрии, показали, что в парах находятся полимеризованные молекулы \(\text{W}_2\text{O}_6 \), \(\text{W}_3\text{O}_8 \), \(\text{W}_3\text{O}_9 \) и \(\text{W}_4\text{O}_{12} \) с преобладанием тримера [36—40].

При изучении давления пара над \(\text{WO}_3 \) Аккерман [36] обнаружил понижение давления при изменении состава от \(\text{WO}_3 \) до \(\text{WO}_{2.96} \), вследствие потери кислорода при нагревании \(\text{WO}_3 \) в вакууме. Состав \(\text{WO}_{2.96} \) является нижней границей области твердого раствора \(\text{WO}_{3-x} \). Процесс сублимации фазы состава \(\text{WO}_{2.96} \) сопровождается образованием в паровой фазе полимерных молекул в соответствии с уравнением:

\[
\text{WO}_{2.96} \text{(тв)} = \alpha \text{W}_{n}\text{O}_{3n} \text{(г)} + \beta \text{W}_3\text{O}_8 \text{(г)},
\]

\(n = 2, 3 \) и 4.

В случае двукиси вольфрама процесс сублимации сопровождается разложением твердой фазы по реакции:

\[
\text{WO}_2 \text{(тв)} = a\text{W}_x\text{O}_y \text{(г)} + b\text{W} \text{(тв)}.
\]

В табл. 19 приведены уравнения зависимости давления пара (\(p, \) ат) от температуры [\(\lg p = (A/T) + B \)] для различных полимеров в парах над твердыми фазами \(\text{WO}_{2.96} \) и \(\text{WO}_2 - W \) по данным

124
Таблица 19

ЗАВИСИМОСТЬ ПАРЦИАЛЬНОГО ДАВЛЕНИЯ ОТ ТЕМПЕРАТУРЫ В ИНТЕРВАЛЕ 1300—1500 К ДЛЯ ОКИСЛОВ ВОРМОЛЯ

| Оксид в газовой фазе | \(A \) | \(B \) | \(\Delta H^\circ_{
+} \text{кул/моль} \) | Литературный источник |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_2O_9)</td>
<td>-23 800 ± 590</td>
<td>11,76 ± 0,38</td>
<td>108,9 ± 2,7</td>
<td>[36]</td>
</tr>
<tr>
<td>(W_2O_8)</td>
<td>-24 840 ± 610</td>
<td>11,76 ± 0,40</td>
<td>113,7 ± 2,8</td>
<td>[36]</td>
</tr>
<tr>
<td>(W_2O_{12})</td>
<td>-27 190 ± 610</td>
<td>13,27 ± 0,40</td>
<td>124,4 ± 2,8</td>
<td>[36]</td>
</tr>
<tr>
<td>(W_2O_6)</td>
<td>-25 180 ± 610</td>
<td>11,81 ± 0,40</td>
<td>115,2 ± 2,8</td>
<td>[36]</td>
</tr>
<tr>
<td>(W_4O_9)</td>
<td>-23 934</td>
<td>12,02</td>
<td>109,4</td>
<td>[39]</td>
</tr>
<tr>
<td>(W_4O_8)</td>
<td>-24 830</td>
<td>12,0</td>
<td>113,4</td>
<td>[39]</td>
</tr>
<tr>
<td>(W_4O_{12})</td>
<td>-27 519</td>
<td>13,98</td>
<td>125,7</td>
<td>[39]</td>
</tr>
<tr>
<td>(W_2O_6)</td>
<td>-25 552</td>
<td>12,03</td>
<td>116,7</td>
<td>[39]</td>
</tr>
</tbody>
</table>

Твердая фаза \(WO_2.9\)

Твердая фаза \(WO_2 — W \)

работ Аккерманна [36] и Е. К. Казенаса [38, 39]. Данные этих авторов для равновесной паровой фазы над \(WO_{2.9} \) близки между собой.

В табл. 20 приведено общее давление пара над \(WO_3 \) (тв) и относительный состав пара при различных температурах. Можно видеть, что в интервале температур 1300—1500 К преобладает тример.

Аккерманн отмечает, что особенно систему W—O является относительно более высокая устойчивость \(WO_3 \) (валентное состояние 6+) в паровой фазе по сравнению с твердой фазой при высоких температурах (1300—1600 К).

Таблица 20

ОБЩЕЕ ДАВЛЕНИЕ, СКОРОСТЬ СУБЛИМАЦИИ И СОСТАВ ПАРА НАД \(WO_3 \) (тв) [38, 39]

<table>
<thead>
<tr>
<th>Температура, К</th>
<th>Общее давление, мм рт. ст.</th>
<th>Относительный состав пара, %</th>
<th>Скорость сублимации, г/(см²·с) × 10⁻⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(W_2O_9)</td>
<td>(W_3O_8)</td>
<td>(W_4O_{12})</td>
</tr>
<tr>
<td>1300</td>
<td>0,43</td>
<td>69,5</td>
<td>16,0</td>
</tr>
<tr>
<td>1350</td>
<td>2,17</td>
<td>67,0</td>
<td>17,4</td>
</tr>
<tr>
<td>1400</td>
<td>9,74</td>
<td>64,0</td>
<td>17,6</td>
</tr>
<tr>
<td>1450</td>
<td>39,6</td>
<td>61,5</td>
<td>17,7</td>
</tr>
<tr>
<td>1500</td>
<td>147</td>
<td>58,5</td>
<td>17,7</td>
</tr>
</tbody>
</table>
Приведенные выше зависимости общего и парциальных давлений паров окислов над WO_3 и WO_2 определены для интервала температур 1030—1330°С. Для более низких температур количественные данные отсутствуют.

Качественные наблюдения показали, что в потоке воздуха существенная сублимация WO_3 наблюдается при 800—850°С, а WO_2 при 1000—1050°С [43]. Степень возгонки возрастает в присутствии паров воды вследствие образования окислами вольфрама гидратов $WO_x \cdot nH_2O$, заметно сублимирующих при температурах 500—600°С [44, 54].

2. ТЕРМОДИНАМИКА ВОССТАНОВЛЕНИЯ ТРЕХОКИСИ ВОЛЬФРАМА ВОДОРОДОМ

Наиболее достоверные данные о равновесии в системе W—O—H опубликованы в 1957—1960 гг. И. А. Васильевой, Я. И. Герасимовым и Ю. П. Симановым [19, 53] и Гриффисом [27], которые исследовали равновесие циркуляционным методом.

Равновесие в обеих работах изучалось как со стороны восстановления, так и со стороны окисления образцов. Фазовый состав промежуточных продуктов восстановления изучали рентгенографическим методом. Было установлено, что в интервале температур 600—900°С восстановление проходит в четыре стадии соответственно существованию четырех окислов вольфрама:

$$WO_3 + 0,1H_2 \rightleftharpoons WO_{2,9} + 0,1H_2O;$$ \hspace{1cm} (5.3)

$$WO_{2,9} + 0,18H_2 \rightleftharpoons WO_{2,72} + 0,18H_2O;$$ \hspace{1cm} (5.4)

$$WO_{2,72} + 0,72H_2 \rightleftharpoons WO_2 + 0,72H_2O;$$ \hspace{1cm} (5.5)

$$WO_2 + 2H_2 \rightleftharpoons W + 2H_2O.$$ \hspace{1cm} (5.6)

* Обзор данных этих публикаций приведен в справочнике [52].
Значения констант равновесия, полученные в рассмотриваемых исследованиях, приведены в табл. 21.

Таблица 21

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_p</td>
<td>$\lg K_p$</td>
<td>K_p</td>
</tr>
<tr>
<td>WO$_3$ \rightarrow WO$_2$</td>
<td>700</td>
<td>5,13</td>
<td>0,7107</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>10,52</td>
<td>1,0221</td>
</tr>
<tr>
<td>WO${2,0}$ \rightarrow WO${2,78}$</td>
<td>600</td>
<td>0,86</td>
<td>0,0551</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>2,988</td>
<td>0,4755</td>
</tr>
<tr>
<td>WO$_{2,78}$ \rightarrow WO$_2$</td>
<td>600</td>
<td>0,741</td>
<td>0,1300</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0,947</td>
<td>0,0235</td>
</tr>
<tr>
<td>WO$_2$ \rightarrow W</td>
<td>600</td>
<td>1,154</td>
<td>0,06222</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1,365</td>
<td>0,1350</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0,303</td>
<td>0,517</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>0,465</td>
<td>0,3220</td>
</tr>
</tbody>
</table>

Приложение. $K_p = \frac{p_{3}O_2}{p_{H_2}}$.

Зависимость $\lg K_p = f (1/T)$, по данным И. А. Васильевой, Я. И. Герасимова и Ю. П. Симанова, описывается приведенными ниже уравнениями.

Равновесие α-WO$_3$ + H$_2$ в интервале 640—937° C:

1. $\lg K_{p1} = 3792,0/T + 4,8268$;
2. $\lg K_{p2} = 1442,5/T + 1,684$;
3. $\lg K_{p3} = 801,7/T + 0,8615$;
4. $\lg K_{p4} = 2219/T + 1,5809$.

Равновесие β-WO$_3$ + H$_2$ в интервале 630—791° C:

1. $\lg K_{p1} = 3266,9/T + 4,0667$;
2. $\lg K_{p2} = 4508,5/T + 5,10866$;
3. $\lg K_{p3} = 904,83/T + 0,90642$;
4. $\lg K_{p4} = 2325/T + 1,650$.

Приведенные в табл. 21 значения констант равновесия подсчитаны по этим уравнениям. Из данных табл. 21 можно видеть, что константы равновесия реакций восстановления водородом двух
модификаций сильно отличаются для первых двух стадий восстановления и в гораздо меньшей степени для третьей и четвертой стадий.

Авторы отмечают, что при восстановлении α-WO₃ промежуточные окислы (WO₂₉, WO₂₇₂) имели структуру, описанную ранее Магнели [8], тогда как при восстановлении β-WO₃ структура промежуточных окислов, судя по рассчитанным межплоскостным расстояниям, иная. Данные Гриффиса для первых трех стадий близки к данным И. А. Васильевой для восстановления β-WO₃ и несколько отличаются для последней стадии (см. табл. 21 и рис. 32). Это, по-видимому, объясняется различиями в методике постановки опытов.

В работе И. А. Васильевой все промежуточные окислы получались в результате восстановления исходной трехокиси вольфрама водородом. Поэтому они могли иметь дефектную структуру и отличаться от стехиометрического состава (в пределах области гомогенности). В работе Гриффиса все промежуточные окислы (WO₂₉, WO₂₇₂, WO₂) были предварительно синтезированы длительным нагреванием смесей WO₃ + W. В реакционную лодочку помещали смесь двух фаз, участвующих в изучаемом гетерогенном равновесии.

Гриффис вывел уравнения зависимости энталпий и свободной энергии для четырех стадий восстановления:

Стадия I (WO₃ ⇌ WO₂₉)

\[
\Delta H^\circ = 42300 + 1,90T - 33,1 \cdot 10^{-3}T^2 + 0,04 \cdot 10^5T^{-1}; \quad (5.15)
\]

\[
\Delta G^\circ = 42300 - 1,90T \ln T + 33,1 \cdot 10^{-3}T^2 + 0,02 \times \times 10^5T^{-1} - 66,0T; \quad (5.16)
\]

\[
\Delta H_{298}^\circ = 39,9 \pm 1,0 \text{ ккал}, \quad \Delta G_{298}^\circ = 22,4 \pm 1,0 \text{ ккал}. \quad (5.17)
\]

Стадия II (WO₂₉ ⇌ WO₂₇₂)

\[
\Delta H^\circ = 19100 - 3,35T + 0,89 \cdot 10^{-3}T^2 + 0,04 \cdot 10^5T^{-1}; \quad (5.18)
\]

\[
\Delta G^\circ = 19100 + 3,35T \ln T - 0,89 \cdot 10^{-3}T^2 + 0,02 \times \times 10^5T^{-1} - 44,1T; \quad (5.19)
\]

\[
\Delta H_{298}^\circ = 18,2 \pm 1,0 \text{ ккал}; \quad \Delta G_{298}^\circ = 11,6 \pm 1,0 \text{ ккал}. \quad (5.20)
\]

Стадия III (WO₂₇₂ ⇌ WO₂)

\[
\Delta H^\circ = 6110 + 3,35T + 0,89 \cdot 10^{-3}T^2 + 0,04 \cdot 10^5T^{-1}; \quad (5.21)
\]

128
\[\Delta G^\circ = 61 \, 100 + 3,35T \ln T - 0,89 \cdot 10^{-3}T^2 + 0,02 \times \times 10^5 T^{-1} - 28,6T; \]
(5.22)

\[\Delta H_{298} = 5,2 \pm 1,0 \text{ ккал}; \quad \Delta G_{298}^\circ = 3,2 \pm 1,0 \text{ ккал.} \]
(5.23)

Стадия IV (WO₃ \(\rightarrow \) W)

\[\Delta H^o = 10 \, 125 - 3,48T + 1,08 \cdot 10^{-3}T^2 + 0,04 \cdot 10^5 T^{-1}; \]
(5.24)

\[\Delta G^o = 10 \, 125 + 3,48T \ln T - 1,08 \cdot 10^{-3}T^2 + 0,02 \times \times 10^5 T^{-1} - 30,7T; \]
(5.25)

\[\Delta H_{298} = 9,2 \pm 0,05 \text{ ккал}; \quad \Delta G_{298} = 6,8 \pm 0,5 \text{ ккал.} \]
(5.26)

Все реакции восстановления — эндотермические, соответственно этому константы равновесия увеличиваются с температурой. Для последней стадии (WO₂ \(\rightarrow \) W) константы равновесия имеют относительно низкие значения. Однако, как видно из рис. 33, восстановление WO₂ до вольфрама термодинамически возможно при довольно высоких концентрациях паров воды. Так, при температуре 800°C равновесный состав газовой фазы 35% H₂O и 65% H₂. В условиях, близких к равновесным, реакции протекают медленно. Для ускорения процесса в производственных условиях используют хорошо осушенный водород и ведут процесс с большим избытоком водорода, пропуская его со скоростью, обеспечивающей удаление паров воды.

3. КИНЕТИКА И МЕХАНИЗМ ВОССТАНОВЛЕНИЯ WO₃ ВОДОРОДОМ

Стадии процесса в зависимости от режима восстановления

Кинетика и механизм восстановления WO₃ водородом изучались многими исследователями [55—67]. Большей частью в кинетических исследованиях использованы методы непрерывного взвешивания, термографии в сочетании с рентгенографическим ана-
лизом продуктов восстановления. Опыты проводились в токе водорода с заданной скоростью и влажностью, пропускаясь над навеской слоя порошка WO₃ или спрессованной таблеткой трехокиси вольфрама.

Основные выводы авторов сводятся к следующему.
1. В интервале температур 380—440°C WO₃ восстанавливается водородом по обратимой реакции:

 WO₃ + 0,1H₂ ⇌ WO₂,9 + 0,1H₂O. \(\text{(5.27)} \)

2. В интервале температур 440—630°C (ниже температуры превращения β-W → α-W) происходит восстановление WO₂,9₀ до β-W:

 WO₂,9₀ + 2,9H₂ ⇌ β-W + 2,9H₂O. \(\text{(5.28)} \)

Выше температуры 630°C восстановление протекает с образованием α-W:

 WO₂,9₀ + 2,9H₂ ⇌ α-W + 2,9H₂O. \(\text{(5.29)} \)

3. При температурах ниже 700°C окислы WO₂,7₂ и WO₂ образуются в результате реакций вторичного взаимодействия β-W с WO₂,9₀ и взаимодействия последнего с WO₂:

 WO₂,9₀ + 0,45β-W → 1,45WO₂; \(\text{(5.30)} \)

 WO₂,9₀ + 0,25WO₂ → 1,25WO₂,7₂; \(\text{(5.31)} \)

 WO₂,7₂ + 0,36β-W → 1,36WO₂ (ниже 630°C); \(\text{(5.32)} \)

 WO₂,7₂ + 0,36α-W → 1,36WO₂ (выше 630°C). \(\text{(5.33)} \)

Реакции (5.30), (5.32), (5.33) протекают особенно активно вблизи температуры превращения β-W → α-W, когда подвижность атомов резко возрастает. Выше 700°C при относительно
высокой влажности водорода (30% H₂O) возможно непосредственное восстановление WO₄₋₀ водородом до окисла WO₂₋₇₂:

\[\text{WO}_{2,9} + 0,18 \text{H}_2 \rightarrow \text{W}_{2,72} + 0,18 \text{H}_2\text{O}. \] (5.34)

4. Вольфрам может образоваться не только по реакциям (5.28) и (5.29), но также в результате непосредственного восстановления WO₂₋₇₂ и WO₂:

\[\text{WO}_{2,72} + 2,72 \text{H}_2 \rightarrow \text{W} + 2,72 \text{H}_2\text{O}. \] (5.35)

По этой реакции ниже 630°С образуется β-W, выше 630°С образуется α-W:

\[\text{WO}_2 + 2\text{H}_2 \rightarrow \alpha-\text{W} + 2\text{H}_2\text{O}. \] (5.36)

Рис. 34. Схема развития реакции восстановления WO₄⁻ водородом в спрессованной таблетке

Реакция (5.36) протекает выше 630° С, поэтому образуется только α-W. При восстановлении WO₂ водородом в тонком слое, когда отвод паров воды не контролируется процесса, выявляется автокауталитический характер течения реакции: активное восстановление начинается после образования некоторого количества кристаллов вольфрама [70]. Хоген с сотр. [58] и японские исследователи Ямагучи, Такеда и Морияма [63] изучали кинетику восстановления спрессованных таблеток трехокиси вольфрама.

Качественно картины развития процесса, наблюдавшиеся авторами этих работ, аналогичны (рис. 34).

1. Первоначально быстро (по всему сечению таблетки) происходит превращение WO₃ в WO₂₋₇₂. По всей вероятности, первая и вторая стадии протекают столь быстро, что WO₄₋₀ не обнаруживается.

2. Когда первая стадия близка к завершению, на поверхности таблетки появляется тонкий слой WO₂, граница которого передвигается с определенной скоростью.

3. На поверхности слоя WO₂ появляется слой вольфрама, который растет во времени, но с меньшей скоростью, чем слой WO₂.

Первоначальное отсутствие слоя вольфрама на слое WO₂ и последующее его появление легко объяснимо. В первый период количество паров воды, транспортируемых от поверхности раздела

* Авторы ошибочно приписывают этому окислу формулу W₄O₁₁ или WO₂₋₇₅ [см. с. 115].
WO_{2,72} — WO_2 к наружной поверхности, достаточно для предотвращения реакции восстановления WO_2 до W. Однако по мере увеличения слоя WO_2 скорость реакции на границе WO_{2,72}—WO_2 уменьшается, и количество паров H_2O, поступающих к наружной поверхности, недостаточно для подавления реакции WO_2 → W. Тогда появляется слой вольфрама.

Аустин [59] произвел аналитическую обработку данных работы [58]. Автор исходил из представления, что скорость стадий WO_{2,72} → WO_2 и WO_2 → W определяется площадью фазовой границы, передвигающейся внутрь таблетки. Условно приняв, что таблетки сферические, автор вывел следующие уравнения зависимости скорости восстановления [г O_2/(см^3·с)] от температуры:

Стадия WO_3 → WO_{2,72}:

\[K_1 = 8,35 \exp\left(-20,4/RT\right) \] \hspace{1cm} (5.37)

стадия WO_{2,72} → WO_2:

\[K_2 = 0,75 \exp\left(-15,5/RT\right) \] \hspace{1cm} (5.38)

стадия WO_2 → W:

\[K_3 = 4,49 \exp\left(-21,2/RT\right) \] \hspace{1cm} (5.39)

Ямагучи и др. [63] получили значения энергии активации для трех последовательных стадий восстановления таблетки: 17,2; 10,0 и 23,3 ккал/моль соответственно, что близко к значениям, полученным Аустином, особенно для стадии WO_2 → W. Образующийся на второй стадии слой WO_2 является плотным, поэтому процесс лимитируется, как полагают авторы, диффузией водорода через этот слой. Авторы показали, что кинетические кривые второй стадии восстановления (WO_{2,72} → WO_2) в интервале температур 642—790°С описываются диффузионным уравнением Яндера:

\[\left\{1 - (1 - x)^{1/3}\right\} = K_2 V^{\sqrt{\tau}}, \] \hspace{1cm} (5.40)

где \(x \) — степень реагирования (в долях единицы или в %).

Образующийся на третьей стадии (WO_2 → W) слой вольфрама весьма пористый и не оказывает существенного диффузионного сопротивления. Скорость реакции в этом случае пропорциональна поверхности раздела WO_2—W, кинетические кривые описываются уравнением Мак-Кевана [68]:

\[1 - (1 - x)^{1/3} = K_3 \tau. \] \hspace{1cm} (5.41)

Таким образом, на третьей стадии процесс контролируется химической кинетикой.

1 Представляется более вероятным лимитирование процесса диффузии паров воды через слой WO_2.
Кинетика восстановления в слое порошка WO₃ значительной толщины

Рассматривавшиеся выше исследования кинетики восстановления водородом проводились в условиях, далеких от условий промышленной технологии. На практике большей частью восстановление ведут в трубчатых печах при непрерывном продвижении лодочки с трехокисью вольфрама вдоль труб печи. Высоту насыпи варьируют от 2 до 5 см. Кинетику восстановления в стационарном слое WO₃ изучал Парсонс [62]. Автор исходил из представления, что в неподвижном слое скорость восстановления лимитируется диффузией паров воды через слой порошка к поверхности насыпного слоя (рис. 35). Это подтверждается наблюдаемым расположением слоев: W на WO₂ и WO₂ на WO₂₇₂ (подобно их расположению при восстановлении таблеток)¹. Для вывода зависимости времени восстановления от высоты слоя Парсонс исходил из уравнения скорости стационарной диффузии одного газа через другой, выведенного Шервудом [69]. Для рассматриваемого случая его можно представить в следующем виде:

\[
\frac{dM}{S \, dt} = \frac{DP}{RTx} \cdot \frac{p'_{H_2O} - p_{H_2O}^0}{\rho_{H_2O, cp}}
\]

где \(\frac{dM}{S \, dt} \) — удельная скорость взаимодействия окисла с водородом, моль О₂/(см²·с);

\(S \) — поверхность раздела фаз, см²;

\(D \) — коэффициент диффузии паров воды, см²/с;

\(R \) — газовая постоянная, см³·ат/(моль·град);

\(P \) — общее давление, ат;

\(T \) — температура, К;

\(x \) — путь диффузии (толщина диффузионного слоя), см;

\(p'_{H_2O} \) — парциальное давление паров воды на реагирующей поверхности, равное равновесному при данной температуре, ат;

\(p_{H_2O}^0 \) — парциальное давление паров воды в поступающем водороде, ат;

¹ Автор не приводит доказательств образования окисла WO₂₇₂. Более вероятно в условиях эксперимента образование окисла WO₂₉.
\(\rho_{H_2}, cr \) — среднелогарифмическое значение парциального давления водорода в диффузионном слое, ат.

\[
\rho_{H_2}, cr = \frac{\rho'_{H_2} - \rho^0_{H_2}}{\ln \left(\frac{\rho'_{H_2}}{\rho^0_{H_2}} \right)},
\]

где \(\rho'_{H_2} \) — парциальное равновесное давление водорода на фазовой границе при данной температуре, ат;
\(\rho^0_{H_2} \) — парциальное давление водорода в газовом потоке, ат.

В уравнении (5.42) члены \(D, \rho_{H_2} \) и \(\rho_{H_2}, cr \) зависят от температуры. Их можно объединить в зависящий от температуры фактор \(f(T) \):

\[
f(T) = D \frac{\rho'_{H_2} - \rho^0_{H_2}}{T \rho_{H_2}, cr}.
\]

Тогда (5.42) можно представить в виде:

\[
\frac{dM}{S d\tau} = \frac{Pf(T)}{Rx}.
\]

На каждой стадии восстановления количества молей кислорода, реагирующих в элементарном слое толщиной \(dx \), равно:

\[
dM = M_\rho S \, dx,
\]

где \(M \) — количество молей кислорода на 1 г окисла;
\(\rho \) — насыпная масса окисла, г/см³;
\(S \) — поверхность, см²;
\(dx \) — изменение пути диффузии за время \(d\tau \) (см. рис. 35).

Подставляя (5.45) в (5.44), получим:

\[
\frac{M_\rho \, dx}{d\tau} = \frac{Pf(T)}{Rx}.
\]

Разделение переменных и интегрирование в пределах \(\tau = 0, x = 0 \) и \(\tau = \tau_1, x = x_1 \) дает:

\[
x^2 = \frac{2\tau Pf(T)}{M_\rho R}.
\]

Объединяя постоянные величины в общую константу \(K \), получим:

\[
\tau = \frac{K_\rho}{f(T)} \, x^2.
\]

Путь диффузии \(x \) можно заменить эквивалентной величиной \(qh \), где \(q \) — доля окисла, восстановленного ко времени \(\tau \), \(h \) — общая начальная высота слоя окисла.

Отсюда

\[
\tau = \frac{K_\rho}{f(T)} \, (qh)^2.
\]
Экспериментальную проверку уравнения (5.49) проводили при температурах 325—1250°С в прямоугольных лодочках при высоте насыпи окисла 0,8—2,3 см, скорости водорода от 13 до 86 см/с, влажности по точке росы от —25 до +25°С.

В результате обработки экспериментальных данных выведено эмпирическое уравнение, хорошо описывающее кинетические кривые при температурах выше 626°С:

$$\tau = 6,66 \cdot 10^{30} p T^{-5.7} (qh)^{1.6}. \quad (5.50)$$

Показатель степени 1,6 при qh ниже теоретического, равного 2. Однако, несомненно, процесс в основном лимитируется диффузией паров воды. При температуре ниже 625°С реализуется промежуточный режим (скорости химического взаимодействия и диффузии близки по величине).

Влияние примесей на скорость и стадии восстановления

Хегедюс с сотр. [14] методом термогравиметрии изучали влияние примесей соединений ряда элементов на протекание восстановления WO_3. В трехокись вольфрама вводили примеси в виде хлоридов, реже окислов или других соединений в количестве, отвечающем отношению Me/W, равному 0,5%, иногда 0,1%.

Было найдено, что восстановление WO_3 до WO_8 катализируется соединениями Pd, Pt, Au, Os; стадию $WO_{2,9} \rightarrow W$ сильно катализируют примеси As, Sb, Pd и слабее примеси Au, Ce, Sn, Pb, Se, Os. Понижают скорость восстановления примеси B, Al, V, Cr, Mn и особенно фосфорной кислоты.

Несколько детальнее изучено влияние кремнеземистой присадки, вводимой в трехокись вольфрама при изготовлении из вольфрама нитей накаливания. Ванмеркер и др. [60] вводили в исходную трехокись K_2SiO_2 (0,47% K_2O; 0,6% SiO_2) кремнеземистый вольфрамат калия $K_4SiW_{12}O_{40}$ [7,61% (по массе)] $Al(NO_3)_3$ (0,47%) и смесь $K_4SiW_{12}O_{40} + Al(NO_3)_3$. Они сопоставили скорость восстановления чистой WO_3 и WO_8 с присадками при различной толщине слоя трехокиси и влажности водорода. В работе использовали метод непрерывной гравиметрии, все кинетические кривые сняты при температуре 700°С.

Из рис. 36 можно видеть, что первая стадия восстановления (удаление $\sim 1/3$ кислорода) протекает значительно быстрее второй стадии ($WO_2 \rightarrow W$). На второй стадии при слое толщиной 5 мм отчетливо выявляется ускоряющее влияние кремнеземистой присадки, присадка $Al(NO_3)_3$ лишь несколько снижает скорость восстановления. Однако при тонком слое WO_3 ($\sim 1,5$ мм) ускоряющее влияние кремнеземистой присадки не выявляется. Из этого заключили, что присадка ускоряет процесс в случае, когда возникает диффузионное торможение процесса вследствие затруднения удаления паров воды из слоя восстанавливающего материала. Авторы считают, что присадка, по всей вероятности, спо
собствует непосредственному восстановлению $WO_{2.90}$ до W; двукись вольфрама образуется лишь в небольшой степени.

Другое, вероятно, более правильное объяснение содержится в публикации Нейгебауэра и Мильнера [71], в которой рассмотрены пути образования и свойства β-W. Авторы обращают внимание на то, что, кроме первичного β-W, образующегося при восстановлении $WO_{2.90}$ сухим водородом при температурах ниже 650°C, существует вторичный β-W, образующийся из WO_2 (δ-окисел) только в присутствии примесей (соли щелочных металлов, алюминий, фосфорная кислота) при температурах выше 650, вплоть до 900°C. Кроме того, в отличие от первичного β-W вторичный β-W не образуется в совершенно осушенном водороде. На воздухе он не пирофенен. Образование вторичного β-W в присутствии кремнеземистой присадки во влажном воздухе (в толстых слоях окиси) может служить причиной катализитического действия присадки. Кристаллические решетки первичного и вторичного β-W идентичны, но у последнего линии на рентгенограммах более резкие.

Авторы [71] отмечают, что WO_2 образуется не только по твердофазной реакции $WO_{2.90} + 0.45\beta$-W \rightarrow $1.45WO_2$. В условиях повышенной влажности водорода возможно непосредственное восстановление $WO_{2.90}$ до WO_2, так как в этих условиях β-W окисляется парами воды.

Общая все экспериментальные данные, Нейгебауэр и Мильнер [71] наметили пять возможных путей восстановления WO_3.

1 Следует отметить, что недавно установлено образование вторичного β-W при восстановлении водородом калийвольфрамовой бронзы [72].
в зависимости от условий восстановления и наличия присадок, варианты которых схематически представлены на рис. 37. Из этой схемы следует, что восстановление WO₃ водородом протекает большей частью в три стадии (WO₃ → WO₂,₉₀ → WO₂ → W). Однако в этой схеме не учтено, что в условиях высокой температуры (выше 750°С), быстрого ее подъема и повышенной влажности водорода возможно образование фиолетовой окиси WO₂,₇₂, и процесс становится четырехстадийным.

4. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ РАЗМЕРЫ ЧАСТИЦ ВОЛЬФРАМОВЫХ ПОРОШКОВ, ПОЛУЧАЕМЫХ ВОССТАНОВЛЕНИЕМ WO₃ ВОДОРОДОМ

К порошкам вольфрама, предназначенным для производства ковкого металла методом порошковой металлургии, предъявляются определенные требования в отношении их гранулометрического состава. На практике используют порошки со средним размером частиц 2—3 мкм при колебаниях размеров от десятых долей микрона до 5—6 мкм. В производстве твердых сплавов на основе карбида вольфрама в зависимости от марки сплава используют тонкодисперсные, средней зернистости и крупнозернистые вольфрамовые порошки.

В связи с этим весьма важно выявление факторов, влияющих на величину зерен порошков вольфрама. Плотность WO₃ равна 7,5, а вольфрама 19,3 г/см³. Поэтому при отсутствии каких-либо усложняющих факторов из одной частицы WO₃ должна образовываться частица вольфрама соответственно меньшего размера (например, из частицы WO₃ размером 10 мкм получалась бы частица вольфрама размером 6,5 мкм). В этом случае размеры частиц порошка вольфрама определялись бы только размерами частиц исходной трехокиси вольфрама.

Однако из данных исследований и производственной практики известно, что нет однозначной связи между размерами частиц WO₃ и размерами частиц порошка вольфрама. В зависимости от режимов восстановления как из крупнокристаллического, так и мелкозернистого порошка WO₃ можно получить и крупные, и мелкие порошки вольфрама [66]. При этом определяющее влияние на размер частиц вольфрама оказывают размеры зерен образующейся WO₂. Как правило, из одной частицы WO₃ образуется одна частица вольфрама. Однако в реальных условиях восстановления слоя окислов высотой 2—4 см, размеры частиц вольфрама обычно несколько больше размеров исходных частиц WO₂.

В исследованиях механизма образования зерен WO₂ и W различной крупности установлены две группы явлений: перенос через газовую фазу и морфологические (тогохимические) превращения в твердых фазах.
Механизм роста частиц окислов вольфрама в результате переноса через газовую фазу

Г. А. Мерсон впервые обратил внимание на роль летучести окислов вольфрама в механизме роста частиц окислов вольфрама в процессе восстановления [43]. Позднее факторы, определяющие размеры частиц, изучал Коппельман [74]. Авторы этих работ считали, что в условиях восстановления в газовую фазу при температуре 600—800° С могут переходить окислы WO₃, WO₂₉, WO₂,₇₂, а при более высоких температурах и двуокись вольфрама. Предполагалось, что в результате переноса через газовую фазу более крупные частицы окислов расщепляются за счет мелких. В последующем была установлена высокая летучесть окислов вольфрама уже при температурах 500—700° С во влажном водороде вследствие образования соединений типа WOₓ·nH₂O [44, 54, 76].

Как показано выше, в процессе восстановления WO₃ в слое толщиной 2—4 см образуются последовательно находящиеся друг над другом слои WO₂—WO₂₉ и W—WO₂. Исходя из этого можно представить механизм роста частиц верхнего из слоев.

Реакция восстановления протекает в узкой зоне (полосе) между двумя слоями (рис. 38). На нижней границе давление паров воды равно равновесному, здесь восстановление не идет. Образующиеся на этой границе летучие соединения WO₂₉·nH₂O или WO₂·nH₂O, диффундируя в верхние слои, восстанавливаются на поверхности частиц этих слоев (WO₂ или W), увеличивая их размеры. Росту частиц при переносе через газовую фазу будут способствовать следующие факторы [43, 75, 77]:

1) высокая температура восстановления и быстрый ее подъем по длине печи;
2) высокий слой WO₃;
3) повышенная влажность водорода;
4) малая скорость подачи водорода.

Внутри пор слоя окислов, где содержание паров воды близко к равновесному, некоторую роль может играть рост частиц WO₂ за счет окисильно-восстановительного переноса через газовую фазу. Реакция восстановления WO₂₉₀ до WO₂ обратима:

\[
WO₂₉₀ + 0,9H₂ ⇌ WO₂ + 0,9H₂O.
\] (5.51)
Давление паров воды над самыми мелкими частицами WO₂, обладающими более высокой удельной поверхностью, чем крупные частицы, может оказаться выше равновесного. Вследствие этого частицы WO₂ будут окисляться с образованием летучего гидратированного окисла WO²,₉₀₉·nH₂O. Последний будет восстанавливаться на поверхности более крупных частич WO₂, для которых константа равновесия восстановления имеет несколько большее значение, чем для мелких частиц WO₂.

Оксилительно-восстановительный механизм роста проявляется также при нагревании порошка вольфрама во влажном водороде. В сухом водороде укрупнение зерен порошка не наблюдается при длительном нагреве, вплоть до 1200° С. Однако в водороде, содержащем пары воды в концентрации, близкой к равновесной, для реакции WO₂ + 2H₂ ⇌ W + 2H₂O выше 1000 — 1050° С наблюдается заметное укрупнение зерен порошка. Наиболее мелкие частицы вольфрама могут окисляться парами воды с образованием летучего гидратированного окисла WO₂·nH₂O, который восстанавливается на поверхности более крупных частиц вольфрама [73, 75].

Морфологические превращения и размеры частиц вольфрама

Первое серьезное исследование роли кристаллохимических превращений при восстановлении окислов вольфрама водородом выполнено И. С. Тургеневым [64—66]*. Фазовые превращения и изменения размеров зерен при восстановлении WO₃ автор изучал, используя методику визуального микротермического анализа. Восстановление окисла осуществлялось в герметичной нагревательной камере, наблюдение за фазовыми превращениями и изменениями размеров зерна проводилось в отраженном свете с помощью высокотемпературного микроскопа через кварцевое стекло. Одновременно благодаря наличию у окислов вольфрама характерной окраски (WO₃ — желтая, WO₂·₀₉₀ — синяя, WO₂·₁₂ — красно-фиолетовая, WO₂ — коричневая) имелась возможность фиксировать изменения фазового состава восстановленного окисла. Опыты проводились с крупными одиночными монокристаллами WO₃, полученными из крупных монокристаллических пластинок паравольфрамата аммония. Основные выводы автора сводятся к следующему.

1. Первая стадия восстановления WO₃ как в сухом, так и во влажном водороде заключается в образовании синего окисла WO₂·₀₉₀. При этом из одного кристалла WO₃ в результате удаления части атомов кислорода и накопления вакансий в анионной подрешетке происходит перестройка кристаллической решетки

и образование одного кристалла \(\text{WO}_2 \), сохраняющего внешний вид прототипа.

2. В сухом водороде монокристалл \(\text{WO}_2 \) восстанавливается до металла (смесь \(\beta\)-W и \(\alpha\)-W), минуя стадию образования \(\text{WO}_2 \). Образующаяся частица вольфрама сохраняет очертания исходной частицы окисла, но имеет несколько меньшие размеры. При восстановлении во влажном водороде монокристаллическая частица \(\text{WO}_2 \) восстанавливается до двухокиси вольфрама, образуя конгломерат мелких частиц \(\text{WO}_2 \). Дальнейшее восстановление приводит к образованию аналогичного конгломерата частиц вольфрама, причем из одной частицы \(\text{WO}_2 \) образуется одна частица вольфрама. Из этого следует, что размеры частиц порошка вольфрама зависят от размеров частиц двухокиси вольфрама.

3. В процессе восстановления \(\text{WO}_2 \) во влажном водороде обеднение кислородом с сохранением структуры решетки продолжается и после перехода через границу гомогенности синего окисла (состав \(\sim \text{WO}_2 \)), что приводит к образованию неустойчивого твердого раствора, в котором возникают зародыши новой фазы \(\text{WO}_2 \). Этот процесс аналогичен кристаллизации из пересыщенного твердого раствора.

4. Размер частиц двухокиси вольфрама (и связанный с ним размер частиц вольфрамового порошка) зависит от соотношения скоростей зарождения образования и роста частиц \(\text{WO}_2 \).

Более быстрый нагрев или более высокая температура на стадии \(\text{WO}_2 \rightarrow \text{WO}_2 \), увеличивая пересыщение твердого раствора на основе \(\text{WO}_2 \), способствует повышению скорости образования зародышей двухокиси вольфрама, что приводит к увеличению их числа и уменьшению размера частиц \(\text{WO}_2 \). Это, однако, справленливо в случае восстановления в тонком слое, когда пары воды быстро удаляются. В реальных условиях восстановления в слое высотой 2—4 см процесс протекает во внешнедиффузионном режиме. В этом случае повышение температуры, увеличивая скорость восстановления, приводит к повышению влажности водорода в порах слоя окисла. Это в свою очередь приводит к значительному торможению образования зародышей, что способствует укрупнению частиц \(\text{WO}_2 \) и соответственно вольфрама.

Дальнейшим развитием исследований И. С. Тургенева явились работы Сарина, опубликованная в 1975 г. [67]. Автор исследовал морфологические превращения в процессе восстановления крупнокристаллического порошка \(\text{WO}_2 \) (средний размер частиц 7,5 мкм) в токе сухого водорода (точка росы —60°С) при температуре 900°С.

Порошок \(\text{WO}_2 \) свободно насыпали (высота слоя 1,8 см) в прямоугольную лодочку, которую помещали в печь. Путем варьирования времени восстановления были получены слои окислов.

1 Следует отметить, что это заключение было сделано в более ранних исследованиях Малковой и Кулагиной, проведенных в лаборатории МЭЛЗ.
различных стадий восстановления. Образцы, отобранные от каждого слоя, идентифицировали рентгенографическим анализом и по цвету, затем изучали структуру фаз с помощью сканирующего растрового электронного микроскопа. Автор отмечает, что в условиях эксперимента восстановление протекает в четыре стадии, однако стадии WO₃ → WO₂₉₀ и WO₂₉₀ → WO₂₇₂ проходят столь быстро, что их можно рассматривать как одну. Восстановление WO₃ → WO₂₇₂ сопровождается превращением хорошо образованных кристаллов WO₃ в пластинчатые усы WO₃₇₂ двух типов: отдельные случайно ориентированные усы и кластеры (пучки) усов. Отдельные усы со случайной ориентацией формируются из тонких частиц WO₃, кластеры — из более крупных частиц WO₃. Длина усов достигает 50 мкм. Автор полагает, что рост усов происходит через перенос вещества в системе пар—твердое тело: при восстановлении WO₃ образуется летучее соединение WOₓ × nH₂O, разложение которого происходит по реакции:

\[
\text{WO}_x n\text{H}_2\text{O} + (x - 2.72) \text{H}_2 \rightarrow \text{WO}_{2.72} + (x + n - 2.72)\text{H}_2\text{O}.
\]

(5.52)

Усы растут вдоль оси b в моно克莱ной решетке WO₂₇₂, плоскостью роста является плоскость (101).

Присутствие в исходной WO₃ примеси соли натрия (0,02%) не изменяет морфологической последовательности превращений, но катализирует все стадии процесса. На рис. 39—41 показаны структуры кластеров, двукиси вольфрама и вольфрамового порошка.

Морфологические превращения, описанные выше, характерны для высокой температуры восстановления (900° C) и высокой влажности водорода в порах слоя окислов. Следует отметить, что образование иглолибообразных фиолетовых кристаллов WO₂₇₂ при высокой температуре и влажности водорода наблюдал и И. С. Тургенев, предполагая большую роль в этом случае переноса через газовую фазу. Очевидно, что в этих условиях следует ожидать образования более крупнозернистого порошка вольфрама.
Рис. 39. Структура кластеров (пучков пластинчатых усов) WO₂,72

Рис. 40. Структура частиц WO₂, образовавшихся из пластинчатых усов

Рис. 41. Структура частиц вольфрама, образовавшихся из WO₂
Влияние присадок на размер частиц вольфрамовых порошков

В трехокись вольфрама, предназначенную для производства непровисающей вольфрамовой проволоки, обычно вводят присадки, большей частью силиката калия и нитрата алюминия. Влияние различных присадок на размер получаемых вольфрамовых порошков изучал Спир и др. [78]. Исходную H₂WO₄ или WO₃, полученную прокаливанием H₂WO₄ при 800°С, смачивали раствором, содержащим силикат калия и нитрат алюминия. После выпарки досуха материал помещали слоем 2 см в лодочки из сплава инконель, которые проталкивали через горячую зону печи. Режим восстановления: I стадия при 500°С и продолжительности выдержки 1 ч; II стадия при 825°С и продолжительности выдержки 3 ч. Определяли среднюю величину частиц методом проницаемости на приборе Фишера, удельную поверхность по методу БЭТ и распределение по фракциям методом отмучивания.

Было найдено, что введенная присадка силиката калия отчасти регулирует WO₃ с образованием кремневольфраматов K₄SiW₁₅O₄₀ и K₈SiW₁₁O₃₉. Степень взаимодействия и соотношение этих двух солей зависит от активности исходной трехокиси. Размеры частич вольфрама зависят от содержания калия, что доказано опытами с введением в WO₃ кремневольфраматов с различным количеством атомов калия в составе соли. Приведенные ниже данные подтверждают это:

Без присадки	1,6
Присадка:	
H₃SiW₁₅O₄₀	3,4
KH₃SiW₁₂O₄₀	4,0
K₂H₃SiW₁₅O₄₀	9,4
K₂SiW₁₁O₃₉	15,0
K₈SiW₁₁O₃₉	20,0

Добавки хлористого калия также приводят к увеличению размеров частиц порошка вольфрама. Присадка Al(NO₃)₃ мало влияет на размеры частиц порошка, тогда как Ca(NO₃)₂ и MgSO₄ способствуют получению мелкозернистых порошков. Иногда вводимая в WO₃ присадка ThO₂ [WO₃ смачивают раствором Th(NO₃)₄] уменьшает рост частиц.

Получение тонкодисперсного вольфрама из механически активированной трехокиси вольфрама

Известно, что диспергирование твердых тел приводит к увеличению их удельной поверхности и накоплению дефектов в кристаллической решетке. Это обусловливает возрастание химической активности вещества.

¹ Мерой активности WO₃ служила скорость растворения ангирида в 5%-ном растворе KOH.
Шрадер и Вестфал показали, что механически активированная трехокись вольфрама (после размола в вибротермнице) может быть восстановлена водородом при 700° С; в результате получается порошок высокой дисперсности с низким содержанием кислорода [79]. Авторы использовали WO₃, полученную термическим разложением паравольфрамата аммония при 700° С. Она имела удельную поверхность 2,4 м²/г. Механическое активирование проводили в вибротермнице с шарами из твердого сплава. После 10 и 60 мин размола удельная поверхность составила 8 и 10 м²/г соответственно. Увеличение времени размола приводило к постепенному снижению удельной поверхности до постоянной равновесной величины (~7 м²/г). После 300 мин размола трехокись была рентгеноаморфна.

В результате восстановления WO₃, активированной измельчением в вибротермнице (10—30 мин), водородом при 700° С в течение 120 мин получали вольфрамовые порошки с удельной поверхностью ~7,5 м²/г и содержанием кислорода меньше 0,2%. Такие порошки, однако, пирофосфоры. Пирофосфорность исключается пассивированием порошка в среде водорода с добавлением 1% паров бензина в течение 10 мин при 700° С с последующим охлаждением порошка в водороде.

5. ПРАКТИКА ВОССТАНОВЛЕНИЯ ТРЕХОКИСИ ВОЛЬФРАМА ВОДОРОДОМ

Печи для восстановления

Восстановление вольфрамового ангирида водородом проводят в стационарных многотрубных печах с непрерывным или периодическим продвижением контейнеров (лодочек) с восстанавливаемым материалом вдоль трубы или в трубчатых вращающихся печах.

Наиболее распространены многотрубные электрические печи. Печь состоит из двух рядов труб (например, в нижнем ряду шесть труб, в верхнем пять труб), изготовленных из хромоникелевой стали. Диаметр труб 50—70 мм, длина 5—7 м. Трубы заключены в железный кожух, выложенный внутри теплоизоляционными материалами (листовой асbestos, диатомитовый и шамотный кирпич, асбосементные плиты). Непосредственно под трубами и над ними находятся слои фасонной керамики, в пазах которой размещены спиральные нагреватели из нихромовой проволоки диаметром 4,5—5 мм.

Печь имеет пять температурных зон, общая длина которых приблизительно 4 м. Мощность печи около 50 кВт. Лодочки из никеля, сплава «НИМО» (28% Mo, 80% Ni) или из нержавеющей стали, заполненные восстанавливаемым материалом, передвигаются вдоль труб с помощью металлических штанг механическим толкателем. Скорость передвижения может изменяться от 5 до 30 мм/мин. Разгрузочный конец печи снабжен холодильником для охлаждения лодочек, выходящих из горячих зон печи. Водород подается с разгрузочной стороны труб (противоточного движения лодочек). Отработанный водород, содержащий пары воды, выводится с загрузочной стороны труб в коллектор, откуда поступает в систему регенерации, а затем возвращается в процесс [80].
Более совершенны разработанные в последние годы печи с прямоугольными муфелями и механизированной загрузкой и выгрузкой [81]. Эксплуатируют печи с размерами муфеля в сечении 40×160 мм (низкий муфель) и 70×160 мм (высокий муфель). Муфели изготовляют из жароупорной стали X23H18.

Восстановление проводят в прямоугольных лодочках размером 300×145×30 мм (при низком муфеле). В высоком муфеле используют трехъярусные лодочки. Расположение окисла в лодочке тремя тонкими слоями улучшает условия восстановления. Печи с высоким муфелем и трехъярусными лодочками используют на заводах твердых сплавов, где масштабы производства порошка вольфрама велики. Преимущества прямоугольных муфелей и лодочек перед цилиндрическими состоят в одинаковой высоте насыпки слоя окисла в любом сечении лодочки, что обеспечивает однородность качества получаемых порошков.

Наряду с многотрубными печами для восстановления WO₃ водородом применяют непрерывно действующие вращающиеся печи [80, 81]. Вращающиеся трубчатые печи (диаметр трубы 400 мм, длина 4 м) используют в настоящее время на заводах твердых сплавов в первой стадии восстановления (WO₃ → WO₂), проводимой при максимальной температуре 750° C.

В производстве крупнозернистого вольфрама для специальных сортов твердых сплавов восстановление ведут в печах с прямоугольными керамическими муфелями из алюнда при температурах 1100—1200° C. Нагревателем в таких печах служит молибденовая лента.

Питание печей водородом и его регенерация

В производстве вольфрама обычно используют электролитический водород. Водород, поступающий из электролизера, собирается в газогольдеры, из которых направляется к печам, проходя предварительно систему очистки. Очистку от кислорода осуществляют пропусканием газа через контактные вертикальные печи, заполненные катализатором. Катализаторами служат медная губка, хромо-никелевый порошок или смесь Fe + Ni + Cu, нагретые до 400—450° C. Используют также палладиевый асбест, нагретый до 250—300° C. На поверхности катализатора водород соединяется с кислородом. Водород сушат, пропуская через колонки большого диаметра, наполненные силикагелем (пористые гранулы высушенной кремниевой кислоты) или цеолитом. Для регенерации силикагеля его периодически сушат при 180°С обычно в той же колонке, включая электронагревательные спирали, помещенные в осушительную колонку, или продувая нагретый воздух. При использовании силикагеля содержание паров воды в водороде снижается до 0,02 мг/л, что соответствует точке росы приблизительно —45° C.

Более глубокая осушка водорода достигается при заполнении колонок гранулированной гидроокисью калия, которая одно-
Водяная магистраль
Водородная магистраль

Рис. 42. Схема установки для регенерации водорода

в общий коллектор 2, откуда через водянной затвор 3 проходит в трубчатый холодильник 4, где отделяется большая часть паров воды. Далее газ смешивают со свежим водородом (очищенным от кислорода), поступающим из сети, и направляют в осушительную башню 5. Увлекаемые потоком газа частицы влагопоглотителя улавливают рукавным фильтром 6. Осушенный водород затем поступает в компрессор 7, который создает необходимое избыточное давление в системе (давление до компрессора не менее 100 мм вод. ст., после него не выше 1000 мм вод. ст.). Перед поступлением в печь для более глубокой осушки газ пропускают еще через одну осушительную колонку 8 с силикагелем или фосфорным ангидридом. Для предотвращения взрывов служат гасители 9 — стальные баллоны, заполненные тонкой вольфрамовой проволокой.

На некоторых предприятиях в системе регенерации водорода осушительные колонки заполняют кусками плавленого едкого натра.

Подобные регенерационные установки монтируют у каждой печи восстановления. Содержание паров воды в поступающем в печи водороде контролируют по точке росы. В хорошо осущенном водороде содержание паров воды не должно превышать 2—3 мг/м³. Количество свежего водорода, поступающего из печи, должно восполнять расход его на реакции восстановления и потери при загрузке и выгрузке лодочок.

Режимы восстановления

Условия восстановления трехокиси вольфрама определяются требованиями к зернистости вольфрамового порошка в зависимости от его назначения.

В производстве ковкого вольфрама, особенно для изготовления тонкой проволоки для электроламп и электронных приборов, где важно обеспечить оптимальный гранулометрический состав
порошок, восстановление обычно ведут в две стадии: 1) восстановление \(\text{WO}_3 \) до \(\text{WO}_2 \); 2) восстановление \(\text{WO}_2 \) до \(\text{W} \). Каждая стадия проводится на отдельных группах печей. Такое разделение облегчает регулирование режимов восстановления для каждой стадии.

На заводах твердых сплавов восстановление также проводят в две стадии. Здесь существенное значение имеет повышение производительности печей при двустадийном режиме. При одностадийном процессе происходит изменение объема загрузки в результате восстановления \(\text{WO}_3 \) до \(\text{W} \) приблизительно в три раза (плотность \(\text{WO}_3 \) равна 7,2, вольфрама \(19,3 \text{ г/см}^3 \)). Поэтому выгруженные лодочки с порошком вольфрама заполнены примерно на одну треть объема. В случае двустадийного восстановления изменение объема на каждой из стадий меньше, производительность печей выше.

На некоторых заводах первую, низкотемпературную, стадию восстановления, протекающую достаточно быстро при температурах до 750°С, проводят во вращающихся трубчатых печах, а вторую стадию — в многотрубных печах.

К недостаткам проведения восстановления в две стадии следует отнести необходимость дополнительных операций загрузки, выгрузки и пересыпания порошков, что увеличивает механические потери. Кроме того, в этом случае требуется большее число рабочих для обслуживания печей. В связи с этим на заводах твердых сплавов наблюдается тенденция к переходу на одностадийное восстановление в печах с прямоугольными муфелями с загрузкой трехкиси вольфрама в трехъярусные лодочки или во вращающихся трубчатых печах.

Таблица 22

ПРИМЕРНЫЕ РЕЖИМЫ ВОССТАНОВЛЕНИЯ \(\text{WO}_3 \) ВОДОРОДОМ В МНОГОТРУБНЫХ ПЕЧАХ

<table>
<thead>
<tr>
<th>Стадия восстановления</th>
<th>Режимы восстановления</th>
<th>Марка порошка *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>максимальная температура, °С</td>
<td>загрузка в лодочку, г</td>
</tr>
<tr>
<td>Первая</td>
<td>650—670</td>
<td>190—200</td>
</tr>
<tr>
<td></td>
<td>620—640</td>
<td>190—200</td>
</tr>
<tr>
<td>Вторая</td>
<td>800—820</td>
<td>200—250</td>
</tr>
<tr>
<td></td>
<td>850—870</td>
<td>200—250</td>
</tr>
<tr>
<td>Первая</td>
<td>720—750</td>
<td>200—250</td>
</tr>
<tr>
<td>Вторая</td>
<td>850—900</td>
<td>500—600</td>
</tr>
</tbody>
</table>

* ВЧ — чистый вольфрам (без присадок); ВА — вольфрам с кремнеземистой и \(\text{Al}_2\text{O}_3 \) присадками для изготовления непровисающей проволоки; ВМ — вольфрам с кремнеземистой и \(\text{ThO}_2 \) присадками; ВТ — вольфрам с присадкой \(\text{ThO}_2 \).
Как уже отмечалось, основными факторами, определяющими размер частиц порошка, являются температура восстановления, скорость продвижения лодочек, высота слоя окиси в них, скорость подачи водорода в трубы печи и степень его сушки (особенно на второй стадии). Обычно количество подаваемого водорода в 7—8 раз выше теоретически необходимого по отношению к скорости подачиWO₃ в печь.

В табл. 22 приведены типичные режимы восстановления трехокиси вольфрама водородом в многотрубных печах для порошков различного назначения.

Для приготовления порошка с более благоприятным «набором частиц» иногда смешивают порошки различной зернистости, полученные при различных режимах восстановления.

6. ГРАНУЛОМЕТРИЧЕСКИЙ И ХИМИЧЕСКИЙ СОСТАВЫ ВОЛЬФРАМОВЫХ ПОРОШКОВ

В зависимости от назначения порошки вольфрама различают по средней величине частиц и набору зерен, величине удельной поверхности.

Для контроля гранулометрического состава порошков большой частью используют микроскопический и различные варианты седиментационного анализов. Другие методы основаны на определении удельной поверхности порошков по количеству адсорбированных газов или паров или газопроницаемости порошка при различных режимах течения газа. Обзор и детальное описание этих методов содержатся в работах [84, 122—126]. Массовый контроль гранулометрических характеристик производственных партий вольфрамовых порошков осуществляется на отечественных заводах различными методами. К ним относятся следующие.

Метод классификации на фракции в восходящем потоке воды, проходящем последовательно через четыре различного объема конусообразных сосуда в направлении от меньшего к большему.

Для порошков вольфрама марки VA характерно следующее распределение частиц порошка по фракциям:

<table>
<thead>
<tr>
<th>Номер фракции</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание фракции, %</td>
<td>10—13</td>
<td>10—17</td>
<td>27—37</td>
<td>10—15</td>
<td>30—40</td>
</tr>
</tbody>
</table>

Содержание фракции V в указанных пределах для порошков вольфрама марки VA, как показала практика, является оптимальным.

Микроскопический анализ широко используется для определения гранулометрического состава порошков. Метод заключается в подсчете с помощью микроскопа, снабженного окулярной сеткой или шкалой, числа зерен различного размера. В результате измерений 200—500 частиц вычисляют распределение (в процентах) частиц порошка по их величине в микронах. Достоверность анализа в большой мере зависит от качественного приготовления пре-
парата порошка для просмотра. Различные методы приготовления препаратов описаны в работах [84, 122—127].

С целью ускорения микроскопического анализа разработаны автоматические методы измерения и подсчета результатов с помощью анализирующего счетного блока (компьютера). В основу работы приборов положен принцип сканирования изображения на телевизионном экране электронным лучом. На принцип сканирования основан счетчик-анализатор СЧ-1 *, а также прибор «Квантимет», выпускаемый фирмой «Металс Рисерс» (Англия).

В табл. 23 приведен типичный гранулометрический состав порошков, определенный микроскопическим методом, для производства компактного вольфрама [127—129].

| Таблица 23 |
|---|---|---|---|---|---|
| **Средний гранулометрический состав вольфрамовых порошков, %** |
Марка вольфрама	Размер зерен, мкм	Максимальный размер единичных зерен, мкм	Насыщенная масса, г/см³			
	0—1	1—2	2—3	3—4		
ВА	46	36	16	2	5	≤2,15
ВА (мелкозернистый)	60	26	13	0	3	1,3—1,8
БЧ	40	34	21	5	4	>2,5

Кроме микроскопического метода, для определения гранулометрического состава используют различные варианты седиментационного анализа. Как показано в работе [124], для вольфрамовых порошков седиментационный метод дает результаты, близкие к результатам, полученным с помощью микроскопического анализа при условии подбора жидкой фазы, препятствующей коагуляции частиц. Так, удовлетворительные результаты дает 25%-ный раствор глицерина в воде с добавкой в качестве стабилизатора глюкозы.

Сорбционные методы и методы газопроницаемости используются для определения удельной поверхности и среднего размера частиц порошков. На отечественных заводах для оценки относительной удельной поверхности применяют метод адсорбции навеской порошка паров метанола. При необходимости точной оценки удельной поверхности используют метод низкотемпературной адсорбции азота (или криптона) — метод БЭТ (по имени авторов Брунауэра, Эммета и Теллера), позволяющий измерять истинную

* Автоматический телевизионный счетчик-анализатор микрообъектов марки СЧ-1 Проспект ВДНХ, 1967.
удельную поверхность порошка в широком интервале значений от 0,1 до 20 000 м²/г с относительной погрешностью 2—5%.

Вследствие длительности определений (5—6 ч) метод БЭТ используют преимущественно для выборочных измерений и в исследовательской практике. Для массового контроля порошков используют приборы для определения удельной поверхности, основанные на измерении газопроницаемости слоя порошка. К ним относятся приборы Товарова (Т-3), Фишера и некоторые другие, в которых фильтрацию воздуха через слой порошка осуществляют при давлениях, близких к атмосферному (вязкий режим течения газа); прибор Дерягина, в котором удельную поверхность определяют по сопротивлению фильтрации разреженного воздуха — ниже 0,1 мм рт. ст. (кнутсенауский режим). Описание приборов и практика измерений детально изложены в работах [122, 123].

Следует учитывать, что измерения газопроницаемости дают возможность определить внешнюю поверхность частиц без учета их микропористости. Поэтому определенная этими методами удельная поверхность \(S_0 \) обычно меньше истинной поверхности \(S_{БЭТ} \) (в случае частиц, содержащих микропоры). Зная \(S_0 \), можно определить средний диаметр частиц по формуле

\[
\frac{d_{ср}}{d} = 6/S_0 \phi, \tag{5.53}
\]

где \(\rho \) — плотность порошка.

В работе Р. Л. Гречнюк [124] для порошков вольфрама различной крупности, а также ПВА и окислов вольфрама сопоставлены значения удельной поверхности, определенные по методам БЭТ и Дерягина (табл. 24).

Удельная поверхность производственных вольфрамовых порошков в зависимости от режимов их получения изменяется от 0,05 до \(\sim 2 \text{ м²/г} \). Для порошков марки ВА установлена четкая корреляция между содержанием в порошке фракции V (классификация в потоке) и величиной удельной поверхности, определенной по методу Дерягина ¹.

<table>
<thead>
<tr>
<th>Содержание фракции V, %</th>
<th>63</th>
<th>46</th>
<th>28</th>
<th>22</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0, \text{ м²/г})</td>
<td>0,15</td>
<td>0,109</td>
<td>0,082</td>
<td>0,059</td>
<td>0,055</td>
</tr>
</tbody>
</table>

Удельная поверхность порошков ВА должна быть не ниже 0,06—0,075 м²/г, верхний предел 0,11 м²/г. При большем значении возможно вслучание штабиков вследствие быстрого закрытия пор в процессе спекания.

Для порошков вольфрама, предназначенных для термокатодов, эффективным методом производственного контроля служит метод газопроницаемости спеченной пористой таблетки [130]. Порошки для термокатодов в зависимости от назначения имеют величину давления протекания через спеченную таблетку от 0,4 до 1,1 ат.

¹ Данные лаборатории МЭЛЗ.
Значения удельной поверхности и среднего диаметра порошков

<table>
<thead>
<tr>
<th>Порошок</th>
<th>Метод БЭТ S, м²/г</th>
<th>Метод Дерягина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>С₀, м²/г</td>
<td>dср, мкм</td>
</tr>
<tr>
<td>Паровольфрамат аммония (ПВА)</td>
<td>0,51</td>
<td>0,43</td>
</tr>
<tr>
<td>H₂WO₄</td>
<td>30,0</td>
<td>14,6</td>
</tr>
<tr>
<td>WO₃</td>
<td>12,0</td>
<td>10,5</td>
</tr>
<tr>
<td>WO₃**</td>
<td>12,0</td>
<td>0,53</td>
</tr>
<tr>
<td>WO₄**</td>
<td>6,5</td>
<td>0,56</td>
</tr>
<tr>
<td>WO₂,₉₀</td>
<td>5,8</td>
<td>0,7</td>
</tr>
<tr>
<td>WO₂,₇₂</td>
<td>2,80</td>
<td>0,78</td>
</tr>
<tr>
<td>Тонкодисперсный W</td>
<td>2,30</td>
<td>2,00</td>
</tr>
<tr>
<td>Среднедисперсный W</td>
<td>1,30</td>
<td>1,20</td>
</tr>
<tr>
<td>Грубодисперсный W</td>
<td>0,16</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
<td>0,047</td>
</tr>
</tbody>
</table>

* Порошок получен из вольфрамовой кислоты.
** Порошок получен из паровольфрамата аммония.

Основная примесь в вольфрамовых порошках — кислород, содержание которого в зависимости от режима восстановления составляет 0,05—0,3%. Все металлические примеси, за исключением вводимых в качестве присадок, в большинстве выпускаемых сортов порошков содержится в количествах, составляющих сотые и тысячные доли процента (табл. 25).

Ниже приведена характеристика вольфрамового порошка, выпускаемого на заводе фирмы «Дж. ТЕ Сильвания инкорп.» (США) [142].

Химический состав

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Al</th>
<th>Ca</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание, %·10⁻⁴</td>
<td>26</td>
<td>4</td>
<td>6</td>
<td>0,1</td>
<td>17</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Mg</th>
<th>Na</th>
<th>Ni</th>
<th>Si</th>
<th>Mo</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание, %·10⁻⁴</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>30</td>
<td>8</td>
</tr>
</tbody>
</table>

Гранулометрический состав

<table>
<thead>
<tr>
<th>Размер частиц, мкм</th>
<th>0—1</th>
<th>1—2</th>
<th>2—3</th>
<th>3—4</th>
<th>4—5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание, %</td>
<td>0</td>
<td>15,7</td>
<td>18,8</td>
<td>22,6</td>
<td>17,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Размер частиц, мкм</th>
<th>6—7</th>
<th>7—8</th>
<th>8—9</th>
<th>9—10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание, %</td>
<td>7,5</td>
<td>6,6</td>
<td>2,1</td>
<td>1,0</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Таблица 25

СОСТАВ НЕКОТОРЫХ СОРТОВ БЕСПРИСАДОЧНЫХ ВОЛЬФРАМОВЫХ ПОРОШКОВ, ВЫПУСКАЕМЫХ В СССР

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Содержание примеси, не более, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ПВ-0</td>
</tr>
<tr>
<td>Fe</td>
<td>0,02</td>
</tr>
<tr>
<td>Al</td>
<td>0,01</td>
</tr>
<tr>
<td>Si</td>
<td>0,005</td>
</tr>
<tr>
<td>Ca</td>
<td>0,005</td>
</tr>
<tr>
<td>Ni</td>
<td>0,008</td>
</tr>
<tr>
<td>P</td>
<td>0,005</td>
</tr>
<tr>
<td>S</td>
<td>0,004</td>
</tr>
<tr>
<td>As</td>
<td>0,005</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
</tr>
<tr>
<td>Mg</td>
<td>—</td>
</tr>
<tr>
<td>Sn</td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>—</td>
</tr>
<tr>
<td>Cd</td>
<td>—</td>
</tr>
<tr>
<td>Bi</td>
<td>—</td>
</tr>
<tr>
<td>Cu</td>
<td>—</td>
</tr>
<tr>
<td>Zn</td>
<td>—</td>
</tr>
<tr>
<td>Mo</td>
<td>0,3</td>
</tr>
<tr>
<td>O + H₂O</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Дисперсность по сорбции метанола, м²/г

<table>
<thead>
<tr>
<th></th>
<th>От 0,024</th>
<th>От 0,02</th>
<th>От 0,074</th>
<th>От 0,02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>до 0,074</td>
<td>до 0,07</td>
<td>до 0,07</td>
<td>до 0,07</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е. ПВ-0 и ПВ-1 — порошок вольфрамовый, предназначенный для изготовления штабиков и некоторых марок твердых сплавов. ПВЧ — порошок вольфрамовый чистый для изготовления штабиков и изделий. ПВТ — порошок вольфрамовый технический для изготовления компактного металла, твердых сплавов и других целей. ВЧДК — порошок вольфрамовый для изготовления термокатодов.

7. ВОССТАНОВЛЕНИЕ ВОЛЬФРАМА
ИЗ ТРЕХОКСИС Е ВОЛЬФРАМА
И ВОЛЬФРАМАТА КАЛЬЦИЯ УГЛЕРОДОМ

В тех случаях, когда в порошке вольфрама допускается примесь углерода, может быть применен метод восстановления WO₃ ламповой сажей — наиболее чистым видом технического углерода. Этот метод до недавнего времени использовали в производстве твердых сплавов на основе карбида вольфрама. Однако в настоящее время в этой отрасли производства предпочитают восстановление водородом.

Использование сажи как восстановителя требует введения в технологию операции смешивания порошков WO₃ и сажи, которая должна проводиться в отдельном изолированном помещении для исключения попадания сажи в другие производственные помещения. Кроме того, по данным некоторых исследователей, кристаллы карбида вольфрама, полученные из вольфрамового порошка углеродного восстановления, обладают пониженной прочностью, что, возможно, объясняется большой дефектностью кристаллов исходного порошка. Технический вольф...
фрамовый порошок, восстановленный углеродом, в некоторых случаях применяется в качестве припоя к при выплавке легированных сталей, где требуется присадочный материал повышенной чистоты. Для этих целей можно использовать WO₃ чистоты 99−99,5%, а в качестве восстановителя — сажу, нефтяной кокс или некоторые сорта малоольного угля.

Физико-химические основы восстановления WO₃ углеродом

При нагревании смеси WO₃ с сажей (или измельченным углем или коксом) при температурах выше 750°С происходит восстановление трехокиси вольфрама до вольфрама. При относительно низких температурах (примерно до 1000°С) восстановление протекает преимущественно с участием CO₂, образованием CO₂ и газификацией последнего:

\[
WO₃ + 3CO = W + 3CO₂ \quad (5.54)
\]

\[
3(CO₂ + C = 2CO) \quad (5.55)
\]

\[
WO₃ + 3C = W + 3CO. \quad (5.56)
\]

Реакция (5.56) — суммарная и протекает, подобно восстановлению водородом, через стадии образования промежуточных окислов:

\[
WO₃ + 0,1CO ⇌ WO₂₋₀ + + 0,1CO₂; \quad (5.57)
\]

\[
WO₂₋₀ + 0,18CO ⇌ WO₂₋₀₋₀ + + 0,18CO₂; \quad (5.58)
\]

\[
WO₂₋₀₋₀ + 0,72CO ⇌ WO₂ + + 0,72CO₂; \quad (5.59)
\]

\[
WO₂ + 2CO ⇌ W + 2CO₂. \quad (5.60)
\]

Ниже приведены значения константы равновесия \(K = \frac{P_{CO₂}}{P_{CO}} \) для стадии WO₂ → W:

<table>
<thead>
<tr>
<th>(t, °C)</th>
<th>1000</th>
<th>1058</th>
<th>1166</th>
<th>1200</th>
<th>1224</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>0,538</td>
<td>0,535</td>
<td>0,528</td>
<td>0,490</td>
<td>0,448</td>
</tr>
</tbody>
</table>

Константа равновесия восстановления WO₂ → W мало зависит от температуры.

В отличие от водородного восстановления при восстановлении WO₃ сажей при температурах выше 1000°С не наблюдается укрупнения частиц вольфрамового порошка. Это позволяет для ускорения процесса использовать более высокие температуры 1400—1550°С. В этой области температур давление паров WO₃ и WO₂ достигает значительной величины. Поэтому определяющее значение приобретает механизм восстановления, основанный на испарении окислов вольфрама, адсорбции их паров на поверхности частиц сажи и образовании кристаллов вольфрама в результате взаимодействия частиц сажи с адсорбированными окис-
Восстановление вольфрама из вольфрамата кальция углеродом

Технические вольфрамовые порошки можно получить восстановлением высокосортированного шеллита концентраата или искусственного шеллита углеродом (древесным углем, нефтяным коксом, сажей) при температурах 1200—1300° С. Суммарная реакция восстановления:

\[\text{CaWO}_4 + 3\text{C} = \text{W} + \text{CaO} + 3\text{CO}; \]
\[\Delta G^\circ = 141580 - 116637T \quad \text{(5.61)} \]
\[\Delta G^\circ = 114250 - 11377T \quad \text{(5.62)} \]

Термодинамика и кинетика восстановления изучались А. Н. Зеликановым с сотр. [85, 86]. При исследовании равновесия реакций восстановления было найдено, что процесс протекает через промежуточные стадии образования фазы CaWO\(_{3.8-3.68}\) с областью гомогенности, расширяющейся с повышением температуры, и фазы Ca\(_3\)WO\(_6\), восстанавливавшейся до вольфрама.

При переходе к углеродной стадии восстановления, подобная стадия ранее установлена при изучении восстановления CaWO\(_4\) водородом [87].

После завершения стадии восстановления может быть представлена реакцией

\[\text{Ca}_3\text{WO}_6 + 3\text{CO} \rightleftharpoons 3\text{CaO} + \text{W} + 3\text{CO}_2 \]
\[\Delta G^\circ = 140250 - 11377T \quad \text{(5.66)} \]

* Роль восстановки окислов и восстановления их паров на поверхности угля или графита при углеродическом восстановлении ряда окислов рассмотрена в работах В. П. Елютина и Ю. А. Павлова [82], О. П. Колчина [83] и др.
Из термодинамических данных следует, что восстановление практически возможно при температуре выше 960° С. С достаточной скоростью реакция про-текает при 1200—1250° С.

Кинетика восстановления CaWO₄ схемой изучалась гравиметрическим мето-odom на цилиндрических брикетах при избыточке углерода в смеси, равном 5% от требуемого количества по реакции. Кинетические кривые хорошо описываются уравнением [86]:

\[1 - (1 - \alpha)^{1/3} = Kt, \quad (5.67) \]

где \(\alpha \) — степень восстановления, доли единиц;
\(t \) — время;
\(K \) — константа скорости реакции.
При 1210° С полное восстановление достигается за 30 мин.
Добавка в шихту 1% CaCl₂ сильно ускоряет восстановление при температурах 1000—1100° С и практически не влияет на скорость восстановления при 1200° С и выше.

В интервале температур 1100—1200° С значения энергии активации процесса восстановления находятся в пределах 22—33 ккал/моль. По всей вероятности, лимитирующей стадией в этой области температур является первая стадия гази-фикации углерода — хемосорбция CO₂, для которой \(E = 25 ± 27 \) ккал/моль.

Восстановление шеечтового концентрированного углерода можно проводить, как описано выше, в графитовотрубчатых печах. Основное количество окиси кальция из продукта восстановления можно отделить от порошка вольфрама отмыкой на концентрационном столе [84] или в ги-дроциклоне ¹. Оставшуюся окись кальция отдают растворением в разбавленной соляной кислоте. Промытый и высушенный порошок в зависимости от чистоты исходного шеечтта содержит 95—99% W.

8. ПОЛУЧЕНИЕ ПОРОШКОВ ВОЛЬФРАМА И ВОЛЬФРАМОВЫХ ПОКРЫТИЙ ИЗ ГАЛОГЕНИДОВ

Вышие галогениды вольфрама WCl₆ и WF₆ вследствие низких температур кипения (387 и 17,5° С соответственно) легко очи-щаются дистилляцией. Они служат исходными соединениями для получения порошков вольфрама высокой чистоты, а также плот-ных покрытий и изделий из вольфрама осаждением из газовой фазы. Свойства и способы получения высших галогенидов воль-фрама рассмотрены в гл. IV.

Порошки вольфрама различной крупности получают восста-новлением галогенидов водородом. Для получения покрытий, по- мимо водородного восстановления, используют метод термической диссоциации хлорида вольфрама.

Восстановление галогенидов вольфрама водородом в газовом потоке или в «факеле»

Восстановление галогенидов в газовом потоке используется для получения тонкодисперсных вольфрамовых порошков. Пату галогенида (обычно с инертным газом-носителем) и водород поступают в реакционную камеру, в которой поддерживаются необходимые

¹ Зеликман А. Н., Нисельсон Л. А. Авт. свид. № 170690. — «Бюл. изобр. и тов. знаков», 1965, № 9, с. 2.
мая температура. В камере происходит взаимодействие галогенида с водородом с образованием частиц порошка, оседающих в приемнике и улавливаемых фильтрами.

Общее уравнение реакции восстановления:

$$\text{WF}_6(г) + 3\text{H}_2 = \text{W} + 6\text{H}_2\text{F}(г),$$

где Γ—Cl или F.

В случае WF$_6$:

$$\Delta G^\circ = 23200 - 78,6T; \quad \Delta G^\circ_{800} = -39,6 \text{ ккал/моль};$$ \hspace{1cm} (5.69)

В случае WCl$_6$:

$$\Delta G^\circ = 8000 - 87,2T; \quad \Delta G^\circ_{800} = -61,8 \text{ ккал/моль}. \hspace{1cm} (5.70)$$

Для обоих галогенидов реакция практически необратима. Как видно из табл. 26, равновесная степень восстановления WF$_6$ при стехиометрическом отношении H$_2$: WF$_6$ уже при температуре 330°C достигает 98,3%.

Таблица 26

<table>
<thead>
<tr>
<th>Исходное мольное отношение газов</th>
<th>$P_{обш.ат}$</th>
<th>Степень восстановления, %, при температуре, К</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF : WF$_6$</td>
<td>H$_2$: WF$_6$</td>
<td>600</td>
</tr>
<tr>
<td>0,0</td>
<td>3,0</td>
<td>1</td>
</tr>
<tr>
<td>0,0</td>
<td>3,0</td>
<td>2</td>
</tr>
<tr>
<td>0,0</td>
<td>15,0</td>
<td>2</td>
</tr>
<tr>
<td>3,0</td>
<td>3,0</td>
<td>2</td>
</tr>
<tr>
<td>3,0</td>
<td>3,0</td>
<td>1</td>
</tr>
<tr>
<td>3,0</td>
<td>15,0</td>
<td>2</td>
</tr>
</tbody>
</table>

Восстановление WF$_6$ водородом в факеле. Процесс восстановления в факеле, описанный Смайли с сотр. [88], предполагает самоподдерживающуюся реакцию (за счет выделяющегося тепла), которая протекает между газообразными компонентами, подаваемыми в сопло, установленное в реакционной камере. Поскольку реакция восстановления эндотермичная ($\Delta H^\circ_{298^\circ} = 23,2 \text{ ккал/моль}$), тепла недостаточно для самопроизвольного течения процесса. Чтобы сообщить дополнительное тепло, необходимое для поддержания реакции в факеле, в форсунку, кроме WF$_6$ и водорода, подают фтор, который взаимодействует с избыточным водородом с образованием HF, причем при образовании каждого моля HF выделяется 64,2 ккал.

На рис. 44 показана схема полупромышленного реактора, изготовленного из двух труб диаметром 100 мм и высотой 1,2 м из сплава монель, устойчивого против действия F$_2$ и сухого HF до 600°C.

В первую трубу, где протекает реакция восстановления, через концентрично установленные трубки (сопла), вводят из испари-
теля газообразный WF₆, водород и фтор. Внутренний диаметр наружной трубы 11 мм, а диаметры центральной трубы 6,25 мм (внешний) и 3,75 мм (внутренний). Предпочтительно подавать смесь WF₆ + H₂ в кольцевую часть сопла, а фтор — в центральную трубку. Вторая труба реактора служит фильтром. Внутри трубы установлены пористые фильтрующие патроны, изготовленные спеканием из порошка сплава монель.

От 70 до 85% порошка вольфрама собирается в сборнике фильтра. В сборнике реактора содержится от 15 до 30% более крупной фракции порошка (агломераты), в которой наблюдается повышенное содержание примесей, обусловленное коррозией стенки трубы. Этот продукт направляется на фторирование для получения WF₆. Для стряхивания порошка и предотвращения его спекания реактору и фильтру сообщается вибрация.

Путем охлаждения температура стенок реактора поддерживается в пределах 280—330°С, при этом в реакционном факеле температура достигает ~1400°С (белый накал).

Значение удельной поверхности порошков находилось в пределах 1,3—6,3 м²/г, средний диаметр частиц (микроскопический метод) от 1 до 1,4 мкм. Размеры кристаллитов (рентгенографический метод) были в пределах 785—1000 Å. Средняя насыпная масса 0,5 г/см³, насыпная масса утрюски 0,8 г/см³. Изменением соотношения количества WF₆, подаваемого с водородом и с фтором, можно варьировать размеры частиц и величину удельной поверхности. Порошки вольфрама, восстановленные из WF₆ в факеле, имеют большую удельную поверхность. Так, тонкодисперсные порошки, полученные восстановлением WO₃ водородом, при средней величине частиц 1—2 мкм имеют удельную поверхность ~0,8 м²/г, тогда как восстановленные из WF₆ при той же средней величине частиц имеют удельную поверхность 3—6 м²/г, а при определенных режимах 11—12 м²/г. Спрессованные заготовки из порошков с удельной поверхностью 5—10 м²/г после спекания при температурах 1400—1600°С имеют плотность ~90% от теоретической [89].

Вольфрамовые порошки содержали примесь 0,03—0,05% F. После выдержки порошка в водороде при 680—700°С в течение 8 ч содержание фтора снижается до 0,0035%. В штабике, спрессованном из порошка вольфрама, после спекания при 1800°С содержа-
лишь лишь следы фтора (<2·10⁻⁴%). Содержание углерода в порошках было не ниже 0,01%. Его источник — фтор, в котором найдены следы CF₄.

Общее содержание металлических примесей, за исключением молибдена, находилось в пределах 0,001—0,015%.

Восстановление гексахлорида вольфрама в факеле и в газовом потоке

Восстановление WCl₆ в газовой фазе протекает при температурах 500—800° C с большей убылью свободной энергии.

В лабораторных условиях исследован процесс восстановления WCl₆ водородом в факеле с целью получения ультратонких порошков вольфрама [89, 105]. В обоих этих работах использовали сходные реакторы. Принципиальная схема установки показана на рис. 45. Очищенный водород и пары WCl₆ в смеси с транспортирующим газом — аргоном, предварительно подогретые до определенной температуры (600—900° C), приводятся в контакт в реакционной кварцевой камере. Газы реагируют, образуя факел пламени, в котором протекает самоподдерживающаяся реакция.

Цель подачи аргона через патрубок защитного газа — предотвратить образование металла непосредственно у выхода WCl₆ из
сопла и его закупорку. Защитный газ обеспечивает возникновение факела на некотором расстоянии от сопла. В испаритель из стекла пирекс (диаметр 75 мм) помещали никелевую лодочку, заполненную хлоридом вольфрама. Хорошо воспроизводимые результаты для скорости испарения хлорида получали при температуре в испарителе 275° С (на 2—3° С выше точки плавления хлорида).

Для обеспечения более полного восстановления рекомендуется поддерживать в газовой смеси мольное отношение H₂ : WCl₆ = 20. Порошки имеют размеры частиц от 0,01 до 0,1 мкм, их насыпная масса колеблется от 0,15 до 0,35 г/см³. Характерна сферическая форма частиц.

Основные примеси в ультратонких порошках, полученных восстановлением WCl₆ в факеле, — кислород (приблизительно от 0,6 до 4%) и хлор (0,1—0,3%). Авторы работы [105] считают, что большая часть кислорода в хлора находится в адсорбированном состоянии на поверхности частиц порошка. Для снижения содержания кислорода и хлора рекомендуется перед употреблением проводить термообработку ультратонкого порошка в водороде при 800° С в течение нескольких часов. При этом несколько возрастают размеры частиц.

При прессовании цилиндрических образцов из ультратонких порошков под давлением 6,5 кгс/см² получали прессовки с плотностью ~40% от теоретической, но достаточно прочные. После спекания при 1550° С в водороде в течение 30 мин спеченные образцы имели плотность 94% от теоретической. Таким образом, из ультратонких порошков можно получать плотные изделия при температурах приблизительно на 1000° С ниже, чем при спекании изделий из обычных порошков [89]. Установлено, что подмешивание 10—13% ультратонкого порошка к обычному вольфрамовому порошку обеспечивает получение высокоплотных спеченных заготовок.

В Швеции [106] разработан процесс восстановления WCl₆ водородом в газовом потоке, в результате которого получают тонкодисперсные порошки сферической формы со средним диаметром частиц 0,4 мкм и насыпной массой 1,9—2,1 г/см³. Порошки содержат 0,07% О и 0,01% Cl (adsorбированный HCl).

Порошки отличаются узким гранулометрическим составом. Это характерно и для порошков карбида вольфрама, полученных из вольфрамовых порошков этого типа, восстановленных из гексахлорида вольфрама. Соответственно обеспечивается высокое качество спеченных твердых сплавов.

Восстановление галогенидов вольфрама в кипящем слое

Принципиальная схема восстановления паров галогенида водородом в кипящем слое показана на рис. 46. Очищенный дистилляцией галогенид из испарителя (вместе с инертным газом-носителем) поступает в кипящий слой из частиц порошка вольфрама, созда-
Уделяющий восходящим потоком водорода (или смеси водорода с инертным газом).

Галогенид при заданной оптимальной температуре восстанавливается водородом, осаждаясь на поверхности частиц вольфрама, что приводит к постепенному увеличению их размеров. Периодически крупнозернистый материал выгружают из слоя, часть крупного порошка измельчают (например, в вихревой мельнице) и возвращают в реактор. Избыточный водород, содержащий галогеноводород (HF, HCl), поступает в систему очистки (скруббер, осушительные колонки) и после подогрева возвращается в реактор [90].

Исходные порошки, загруженные в реактор, должны иметь некоторую оптимальную крупность частиц. Мелкозернистые порошки (средний размер 2—3 мкм) трудно перевести в состояние пеэдожжения вследствие склонности их к агломерированию, что ведет к каналообразованию. Однородное пеэдожжение в этом случае может быть достигнуто применением вибрации, сообщаемой реактору. Вольфрамовые порошки с размером частиц 30—80 мкм легко переводятся в состояние однородного кипящего слоя при линейных скоростях водорода 9—12 см/с. Роль распределительной решетки для поступающего газа может выполнять бой вольфрамовых штабиков (размер частиц 3—5 мм), загруженный в нижнюю конусную часть реактора [94], или металлическая решетка с размером отверстий 40 мкм. Следует отметить, что выше определенной температуры (720—800° С) нормальное кипение прекращается (слой оседает), что, вероятно, объясняется спеканием металлических частиц, ведущим к агломерации. Это явление обнаружено рядом исследователей [91—94]. Было найдено, что улучшение очистки подаваемых в слой водорода и аргона смешает температурную границу «нормального кипения» порошка вольфрама с 720 до 900° С [94]. При оптимальном режиме подавляющая часть галогенида должна восстанавливаться на поверхности частиц слоя. Если протекает гомогенное восстановление галогенида в газовой фазе, образующиеся тонкодисперсные частицы металла уносятся потоком газа.
Закономерности восстановления WCl₆ в кипящем слое исследованы в работах [93, 94]. Общая степень восстановления галогенида и доля вольфрама, осажденного на частицах слоя, зависят от температуры процесса, молярного отношения водород: галогенид и водород: инертный газ.

В интервале температур 475—900°С общая степень восстановления непрерывно увеличивается с 72 до 99% (рис. 47). Максимум на кривой степени осаждения при 850°С объясняется двумя причинами. Энергия активации восстановления галогенида до металла на поверхности ниже, чем в объеме. Поэтому лишь при температурах выше 850°С несколько возрастает доля протекания реакции в объеме и соответственно снижается степень осаждения металла. Кроме того, при температурах, близких к 900°С, наблюдается тенденция к спеканию частиц слоя, что должно вести к снижению степени восстановления.

Высокая степень осаждения (96—97%) достигается при молярном отношении Н₂ : WCl₆ ≈ 30 : 1, отношении Н₂ : Ag ≈ 1 : 1 и температуре 800°С. Реакция протекает в кинетической области с энергией активации 17 400 кал/моль. Скорость осаждения пропорциональна концентрации WCl₆ в первой степени. Общее уравнение скорости восстановления в кипящем слое:

\[j = KSC_{WCl_6}e^{-\frac{17400}{RT}}, \] (5.71)

где \(C_{WCl_6} \) — концентрация, моль WCl₆/моль газовой смеси;
\(S \) — поверхность;
\(j \) — скорость осаждения вольфрама, г/(см²·с);
\(K \) — коэффициент скорости.

При температурах 800—850°С, мольном отношении Н₂ : WCl₆ = 30 : 1, Н₂ : Ag = 1,75 : 1 скорость осаждения вольфрама равна 150—200 г/ч на 100 г порошка в слое.

По мере осаждения вольфрама на исходных частицах порошка происходит их сфероидизация (рис. 48). Твердость гранул осажденного вольфрама высокая (780—800 кгс/мм²), что объясняется чрезвычайно мелкозернистой структурой гранул и ярко выраженной текстурой (радиальное направление кристаллитов). После часового отжига в водороде при 1400°С происходит рекристаллизация с понижением твердости до 380 кгс/мм². При малой скорости осаждения (60 г/1000 г слоя) плотность гранул равна плотности вольфрама (~19,1 г/см³). С увеличением скорости осаждения (до 200—300 г/1000 г слоя) плотность понижается до 18,5—18,7 г/см³.

Рис. 47. Зависимость общей степени восстановления WCl₆ (1) и степени осаждения (2) от температуры. Мольное отношение Н₂ : WCl₆ = 50 : 1; Н₂ : Ag = 1 : 2,7

6 А. Н. Зелимхан 161
Аналогично водородному восстановлению хлорида проводится восстановление гексафторида вольфрама, однако оптимальная температура восстановления ниже (550—600° С). Восстановление проводится при молярном отношении H₂ : WF₆ от 4,4 : 1 до 26 : 1. Исходные порошки крупностью от 5 до 50—100 мкм нарастают до сферических частиц диаметром 420—590 мкм. Гранулы имеют весьма высокую чистоту. Общее содержание примесей <0,01%, из которых от 0,002 до 0,005% F; 0,0006% О; 0,0001% N; 0,0004% С. Общее содержание металлических примесей около 0,002% [95, 96].

![Изображение](image.jpg)

Рис. 48. Микрофотография порошков вольфрама:
а — исходный; б — после 36 ч осаждения в кипящем слое

Окслей с сотр. [95] изучал кинетику восстановления WF₆ водородом в кипящем слое в реакторе диаметром 60 мм. В экспериментах варьировали температуру, скорость газовой смеси, подаваемой в слой, мольное отношение H₂ : WF₆, HF : WF₆ и Ag : WF₆ в газовой смеси, общую массу постели (или суммарную поверхность частиц) кипящего слоя, средний диаметр частиц в слое.

В результате статистической обработки результатов авторы [95] вывели следующее уравнение зависимости ступени превращения WF₆ от факторов варьирования:

\[x = 1 - e^{-A}, \]

где \(x \) — степень превращения WF₆ в долях единицы;

\[A = \frac{9,6P}{F} \left(\frac{G}{G_{\text{min}}} \right)^{-0,35} \left(\frac{N_x - 1,5}{\Sigma (Ni + 2,5)} \right)^{0,23} S^{0,81}e^{-7300/RT}. \]

В этом уравнении:
- \(P \) — общее давление, ат;
- \(F \) — общее количество подаваемой в кипящий слой смеси газов, кг·моль/ч;
- \(G \) — скорость подаваемых в кипящий слой газов, кг/(ч·м²);

1 Пат. (США), № 3234007, 1966.
G_{min} — минимальная скорость газов для создания кипящего слоя, кг/(ч⋅м²);

N_2 — количество молей водорода на 1 моль WF₆ в исходной смеси; $\sum N_i = N_2 + N_3 + N_4$ (N_3 — количество молей HF на 1 моль WF₆ в исходной смеси; N_4 — количество молей аргона на 1 моль WF₆ в исходной смеси);

S — суммарная поверхность частиц в слое, м²;

7300 — энергия активации, ккал/моль.

Приведенное уравнение достаточно точно для технологических расчетов при следующих пределах изменения значений параметров: температура от 390 до 660°C; давление $P = 1$ ат; значения G от 490 до 1900 кг/(ч⋅м²); N_2 от 15 до 50; N_3 от 0 до 53; N_4 от 0 до 40.

Минимальная скорость певдоожжения G_{min} зависит от среднего размера частиц, их плотности, плотности и вязкости поступающей в кипящий слой газовой смеси. Последняя рассчитывается по известным формулам, приведенным в работе [95].

По данным работы [97], листы вольфрама, полученные из спеченных заготовок, спрессованных из гранулированных вольфрамовых порошков, имеют необычно мелкозернистую структуру. Важная их особенность заключается в значительно более высокой температуре рекристаллизации в сравнении с обычным листовым вольфрамом.

Восстановление WC₁₆ водородом в кипящем слое можно использовать для покрытия частиц порошков тугоплавких окислов и карбидов (SiC, ZrC, бориды и др.). Прослойки металла улучшают физические и механические свойства спеченных изделий из этих материалов. Так, в работе [91] приведены режимы покрытия частиц двуокиси урана (из которой изготовляют ТВЭЛы ядерных реакторов), вольфрамом в результате восстановления WC₁₆ водородом.

Водородное восстановление галогенидов как метод получения изделий и покрытий из вольфрама осаждением из газовой фазы

Метод получения изделий, который получил название «газофазное формование», заключается в осаждении вольфрама в виде плотного покрытия на подложках из других металлов (например, меди, никеля, молибдена) или графита. После удаления подложки получается изделие из вольфрама, повторяющее форму подложки. Первоначально способ был использован для получения вольфрамовых вкладышей графитовых сопел ракетных двигателей, а затем развит применительно к получению трубок и различных вольфрамовых изделий сложной конфигурации.

Можно осаждать вольфрам на нагретой вольфрамовой подложке, например вольфрамовой проволоке. В этом случае получают плотную заготовку, пригодную для обработки давлением. Обстоятель-
нские обзоры работ в этой области содержатся в ряде публикаций последнего времени [96, 98—100].

Получение покрытий восстановлением WF₆ водородом. Для газофазного формования изделий (трубки, вкладыши и др.) предпочитают водородное восстановление гексафторида вольфрама. К его преимуществам по сравнению с гексахлоридом следует отнести низкую точку кипения (17,1° C), что позволяет легко обеспечить любое заданное парциальное давление фторида в газовой фазе. Кроме того, при атмосферном давлении и температурах выше 500° C восстановление протекает до металла без образования низших фторидов [101]. Осаждение можно проводить при нормальному или пониженном общем давлении в системе.

При газофазном формовании трубок возможно нанесение покрытия на внешнюю или внутреннюю сторону подложки, в качестве которой обычно используют медную трубку. При осаждении металла на внутреннюю поверхность процесс осуществляется сравнительно просто (отпадает необходимость в реакционной камере, так как сама труба служит камерой) и обеспечивается высокая степень использования фторида (более 90%). Вблизи конца трубки, через который вводят реакционную смесь (вблизи инжектора), наблюдается зона максимальной скорости осаждения и соответственно максимальной толщины осадка, причем ее местонахождение зависит от температуры. После максимума толщина осажденного слоя убывает по ходу потока вследствие снижения концентрации WF₆ в реакционной смеси [102, 103]. Равномерное покрытие достигается перемещением нагретой зоны по длине трубки. Для этого трубку помещают в многозонную печь. После осаждения необходимого количества вольфрама в первой зоне температуру снижают до ~400° C (скорость осаждения при этом резко снижается). В результате участок интенсивного осаждения перемещается к горячей зоне второй печи и т. д. Этим способом получают (после удаления меди растворением в азотной кислоте) трубки любой длины диаметром от 12 до 75 мм.

По данным работы [102], при оптимальных условиях (температура 600° C, общее давление 10 мм рт. ст., отношение N₂ : WF₆ = 140 : 1) степень использования фторида достигает 95%. Максимальная скорость осаждения в этих условиях равна 100—110 мкм/ч.

При осаждении вольфрама на внешней поверхности образца (подложки) равномерность покрытия обеспечивается конструкцией сопла и вращением образца с постоянной скоростью. Так, при покрытии трубки сопло выполняют в форме цилиндрической трубки с отверстиями [162].

Кинетика роста слоев вольфрама при восстановлении WF₆ водородом изучалась в статических условиях [101, 107,109] и в газовом потоке [99, 108, 110—112] при различных общем и парциальном давлениях реагентов и геометрии аппарата. Естественно, что результаты и их трактовка сильно различаются (см., например работы [98, 100]).
Процесс осаждения включает следующие стадии:
1) диффузию реагентов (H₂, WF₆) к твердой поверхности;
2) адсорбцию реагентов на активных участках поверхности;
3) химическую реакцию на поверхности;
4) десорбцию продукта реакции HF;
5) диффузию HF в ядро газового потока.

В зависимости от условий процесса лимитирующей может быть одна из первых четырех стадий (при этом вторая и третья стадии обычно объединяются в одну адсорбционно-химическую стадию). Ниже рассмотрены данные лишь некоторых исследований кинетики и механизма осаждения вольфрама восстановлением гексафторида.

![Graph](image)

Рис. 49. Зависимость скорости осаждения вольфрама от температуры при парциональном давлении WF₆ 0,03 ат (а) и от парциального давления WF₆ при 550°С (б)

Е. П. Ничипоренко и др. [107] изучали кинетику осаждения в условиях, близких к статическим, при общем давлении в реакционной камере, равном атмосферному, интервале температур 270—1200°С и парциональном давлении WF₆ от 0,03 до 0,5 ат. На рис.49 приведена зависимость скорости осаждения от температуры и парциального давления WF₆.

Анализируя данные на основе адсорбционной теории Лэнгмюра, авторы пришли к заключению, что адсорбционно-химическая стадия является определяющей в процессе водородного восстановления гексафторида вольфрама в условиях статической газовой фазы. В интервале температур 270—630°С температурная зависимость скорости осаждения хорошо описывается уравнением:

\[j_W = KT^{-2}p_a \exp (-E/RT), \]
где \(j_W \) — скорость осаждения, мкм/мин;
\(K = 2,025 \cdot 10^6 \) мкм/мин;
\(E = 6000 \) кал/моль;
\(p_a \) — парциальное давление WF₆.

Из анализа этого уравнения следует, что кривая зависимости скорости осаждения вольфрама от температуры должна иметь максимум. Однако точки исходящей ветви кривой на рис. 49, а (в интервале 900—1300 К) не совпадают с рассчитанными по уравнению, так как выше 900 К значительная доля WF₆ восстанавливается в газовой фазе. Это приводит к снижению скорости осаждения.
Максимум на кривой (рис. 49, б) зависимости скорости осаждения от парциального давления \(WF_6 \) качественно объясняется исходя из представлений теории активных центров. При малых давлениях поверхность насыщена водородом. Поэтому скорость реакции зависит только от концентрации молекул \(WF_6 \) на поверхности, возрастающей с увеличением давления гексафторида. При больших парциальных давлениях \(WF_6 \) скорость реакции замедляется вследствие вытеснения с поверхности молекул второго реагента — водорода.

Закономерности осаждения в статических условиях изучались также Беркелем и др. [101]. Исследования проводили в реакторе большого объема (30 л), что обеспечивало постоянную концентрацию реагентов. Перемешивание газовой фазы мешалкой исключало расслоение, обусловленное различием молекулярных масс \(WF_6 \) и водорода. Осаждение проводили на медной трубке. Общее давление в системе изменялось от 150 до 760 мм рт. ст. В результате обработки результатов этого исследования на базе модели, в которой учитываются поверхностная реакция и одновременно диффузия в газовой фазе, Брехер [109] предложил следующее уравнение:

\[
j_w = 4,78 \cdot 10^8 P^2 \exp\left(-\frac{27,000}{RT}\right),
\]

где \(j_w \) — скорость осаждения, мкм/мин;

\(P \) — общее давление, ат.

Наибольший практический интерес представляют исследования кинетики осаждения в газовом потоке с отложением вольфрама на внутренней или внешней поверхности трубчатых подложек. Ю. Н. Голованов и А. И. Красовский с сотр. [111] изучали кинетику осаждения вольфрама на внутренней поверхности медной трубы (диаметр 10 мм) при атмосферном давлении. После опыта медную трубку растворяли, а вольфрамовую трубку разрезали на части длиной 10 мм, которые взвешивали. Это позволило получить зависимость скорости отложении от состава газовой фазы, изменяющейся по длине трубы. Опыты проводили при изменении парциального давления \(WF_6 \) от 0,005 до 0,04 ат и температурах 450—600° С. Авторы [111] считают, что в исследованных условиях стадией, контролирующей скорость отложения, является диффузионный подвод гексафторида к твердой поверхности.

При температурах 550—600° С скорость линейно зависит от парциального давления \(WF_6 \). Кривые зависимости скорости от давления \(WF_6 \) выходят на насыщение (плато) только при температурах ниже 520° С. При давлении \(WF_6 \) 0,02 ат и температуре 545° С скорость отложения равна ~90—100 мкм/ч.

Бриант и Майер [112] по методике, аналогичной описанной выше, исследовали кинетику осаждения вольфрама в газовом потоке, но при низких давлениях (от 6 до 60 мм рт. ст.). Вольфрам осаждали на внутренней стенке трубы из нержавеющей стали диаметром 4,88 см. Скорость подачи газовой смеси изменяли от 300 до 2000 см³/мин, температуру от 500 до 870° С.
Анализируя экспериментальные данные, авторы [112] пришли к заключению, что при малых давлениях (до 6 мм рт. ст.) скорость осаждения лимитируется адсорбцией WF₆ на поверхности. В области давлений 6—20 мм рт. ст. и температурах 500—700°С скорость реакции не зависит от давления. В этой области контролирующей стадией скорости осаждения вольфрама является десорбция HF. Скорость процесса описывается уравнением:

$$j_w = K_{des} p_{H_2}^{1/2} p_{WF_6}^{1/6},$$ \(5.76\)

где \(j_w \) — скорость осаждения вольфрама, мм/мин;

\(p \) — парциальные давления H₂ и WF₆, мм рт. ст.;

\(K_{des} \) — объединенная константа, включающая члены, зависящие от температуры.

Энергия активации \(E = 7300 \) кал/моль.

Для более высокого давления (20—60 мм рт. ст.) скорость осаждения контролируется диффузионным подводом реагента к твердой поверхности. Экспериментальные данные в этом случае в соответствии с теоретическим выводом описываются уравнением:

$$j_w = K_{dif} p_{WF_6} T^{1/2}/P_{общ},$$ \(5.77\)

где \(P_{общ} \) — общее давление, мм рт. ст.;

\(K_{dif} \) — объединенная константа;

\(T \) — термодинамическая температура.

Энергия активации в этой области равна 1650 кал/моль. Необходимо отметить, однако, сильное рассхождение экспериментальных значений скорости осаждения со значениями, рассчитанными по уравнениям (5.78) и (5.79).

В работе [110] изучалась кинетика осаждения вольфрама на внутренней поверхности медной трубки (диаметр 20, длина 380 мм) с целью нахождения оптимальных условий осаждения. Были статистически обработаны результаты 81 эксперимента, в которых вариировали температуру от 450 до 820°С, \(P_{общ} \) от 9 до 20 мм рт. ст., скорость потока WF₆ от 60 до 370 см³/мин, скорость потока водорода от 750 до 5200 см³/мин. Критериями оптимизации служили скорость и степень осаждения вольфрама. При допущении, что процесс лимитируется диффузионным подводом WF₆, авторы работы [110] вывели следующее уравнение для степени осаждения вольфрама:

$$x = 1 - \exp \left\{ \frac{C_1}{Q_{WF_6} + 2Q_{H_2}/298} \left[1 - \frac{1}{1 + (P/T) \exp (C_2 - C_3/T)} \right] \right\},$$ \(5.78\)

где \(Q_{WF_6} \) и \(Q_{H_2} \) — скорости потоков WF₆ и H₂ соответственно, см³/мин;

\(T \) — термодинамическая температура, К;

\(P \) — общее давление в системе, мм рт. ст.;

\(C_1, C_2, C_3 \) — постоянные \((C_1 = 788 \pm 102; C_2 = 20,2 \pm 1,2; C_3 = 15 120 \pm 897).\)
Из анализа уравнений следует, что увеличение отношения $H_2 : WF_6$ ведет к увеличению степени осаждения, в то время как увеличение общей скорости потока снижает степень осаждения.

Ю. М. Королев с сотр. исследовали кинетику осаждения вольфрама в газовом потоке на нагретой наружной поверхности медной трубки в интервале температур 400—700°С и различном соотношении $H_2 : WF_6$ в газовой смеси [163]. При низких концентрациях фторида (до ~ 10%) скорость процесса лимитируется диффузионным подводом реагента. С повышением содержания WF_6 наблюдается переход от диффузионного режима к кинетическому. Максимальные скорости осаждения при 600°С (~ 2,4 мм/ч) и при 700°С (~ 4,6 мм/ч) достигаются при концентрациях WF_6 30 и 40% соответственно. В кинетической области экспериментальные данные удовлетворительно описываются обобщенным уравнением:

$$
u = \frac{7,1 \cdot 10^{17} N_{H_2} N_{WF_6}}{\left(1 + \frac{4000}{V_T} N_{H_2} + \frac{2100}{V_T} N_{WF_6} e^{2000/RT}\right)^2} \frac{e^{-13 \cdot 200/RT}}{T^3},$$

где ν — скорость осаждения вольфрама, мм/ч;
P — давление в системе, ат;
N_{H_2} и N_{WF_6} — мольные доли H_2 и WF_6 в газовой смеси.

Получение покрытий восстановлением WC_8 водородом. Осаждение вольфрама из газовой фазы восстановлением гексахлорида вольфрама водородом впервые в конце прошлого века осуществил А. Н. Лодыгин, покрывая угольные нити вольфрамом для получения более стойкого тела накала электроламп 1. В дальнейшем (начиная с 1925 г.) в ряде работ показана возможность получения плотных осадков вольфрама на меди, молибдене, никеле, графите восстановлением гексахлорида водородом при атмосферном и пониженном давлении [96, 98, 115—119]. При атмосферном давлении плотные однородные осадки получаются при температурах 550—650°С [117, 119]. С повышением температуры скорость осаждения падает, так как растет доля хлорида, восстанавливаемого в объеме (гомогенная реакция). Скорость подачи паров WC_8 регулируют изменением температуры в испарителе (от 165 до 230°С).

Рекомендуется проводить процесс при молярном отношении $H_2 : WC_8 \approx 20 : 1$. С увеличением этого отношения скорость осаждения падает. В присутствии примеси оксиэлементов получается пористые, грубозернистые и хрупкие отложения. Поэтому хлорид должен быть предварительно очищен от оксиэлементов [117].

По данным Пауэлла [119], равномерные вольфрамовые покрытия на поверхности большой площади лучше наносить, восстанавливая WC_8 водородом при низком общем давлении (~ 5 мм рт. ст.) и температурах 700—900°С. В этом случае поддерживают в испа-

1 Лодыгин А. Н. Пат. (США), № 575002, 1893.
рите температуру ~160° С. Варианты аппаратов для получения покрытий восстановлением WCl₆ при атмосферном и пониженном давлениях рассмотрены в работах [100, 107, 116].

Состав и структура вольфрамовых покрытий

Вольфрам, осажденный из газовой фазы восстановлением WF₆ или WCl₆ водородом, имеет высокую степень чистоты [120, 121, 163].

По данным работы [163], фторидный вольфрам содержит, %·10⁻⁴: C 0,8—1,0; O 20—40; H 1—2; N <10; F 1—10; Ni <5; Fe 8—10; Al <3; Mg 10—15; Si 15—17; Cu 10—20.

Для вольфрама, осажденного из газовой фазы, характерна столбчатая структура, направление столбцов обычно совпадает с нормалью к фронту кристаллизации. Плотные осадки с относительно гладкой поверхностью получаются при низкой концентрации WF₆ (до 5%) и температурах 650—700° С. При низких температурах (400—500° С) и высоких концентрациях WF₆ (10—20%) образуются осадки с кристаллической огранкой на поверхности. Осадки имеют высокую плотность (19,1—19,3 г/см³) [163].

Для получения мелкозернистой однородной структуры покрытия при осаждении вольфрама из гексахлорида в работе [118] предложено периодическое введение в систему NH₃ с целью частичного нитрирования вольфрама с образованием тонкого слоя W₈N. При последующем продолжении осаждения нитрид разлагается, что предотвращает столбчатый рост кристаллов. За весь период осаждения проводится ряд циклов нитрирования и последующего осаждения вольфрама. Другие пути получения мелкозернистой стабильной структуры осадков рассмотрены в работе [104].

9. ПОЛУЧЕНИЕ ВОЛЬФРАМА ИЗ ГЕКСАКСАРБОНИЛА

Свойства и синтез карбонила вольфрама [131]

Гексакарбонил вольфрама W (CO)₆ — белое кристаллическое вещество. Решетка ромбическая молекулярная, пространственная группа C₃ᵥ — P₃₃₃₁. В молекуле карбонила атом вольфрама окружен шестью группами CO, расположенными в вершинах октаэдра. Атомы W—C—O лежат на одной прямой (рис. 50). Расстояние между атомами, Å:

W—C 2,06±0,04
W—O 3,19±0,05
C—O 1,13±0,05

В элементарной ячейке четыре молекулы W (CO)₆. Периоды решетки: a = 11,90 Å; b = 6,42 Å; c = 11,27 Å. Плотность карбонила при 25° С 2,65 г/см³. Высокая симметричность молекулы карбонила обусловливает летучесть соединения — возгонка наблюдается уже при 50° С. При 178,3° С давление пара над карбонилом достигает 1 ат.
Давление пара описывается уравнением \((p, \text{ мм рт. ст.}):\)
\[
\lg p = -(3872/T) + 11,523.
\] (5.80)

Теплота сублимации \(17,71\) ккал/моль. Энталпия образования твердого \(\text{W(CO)}_6\) из элементов \(\Delta H^*_F = -226,3 \pm 2\) ккал/моль, энталпия образования газообразного \(\text{W(CO)}_6\) \(\Delta H^*_r = -208,3\) ккал/моль.

Гексакарбонил термически устойчив приблизительно до 100—150° С. При более высокой температуре наблюдается разложение с образованием вольфрама и СО. Разложение протекает через стадию образования промежуточных продуктов \(\text{W(CO)}_4\), \(\text{W(CO)}_8\) и др. Гексакарбонил нерастворим в воде и не разлагается водой. При комнатной температуре гексакарбонил не реагирует с концентрированными серной и соляной кислотами и разбавленной азотной кислотой, а также водными растворами щелочей. Концентрированная азотная кислота быстро окисляет карбонил.

Синтез карбонила вольфрама (как и молибделена) не может быть осуществлен, подобно синтезу карбонилов никеля или железа, прямым взаимодействием вольфрама с окисью углерода даже при высоких давлениях CO (выше 200 ат) и температурах 200—300° С. Выход карбонила не превышает 1—2%. В дальнейшем рядом исследователей была установлена возможность получения гексакарбонила вольфрама из хлорида вольфрама, который в процессе синтеза восстанавливается. Образующиеся при восстановлении возбужденные атомы металла могут присоединять молекулы окиси углерода.

На этой основе разработаны мокрые (с применением органических растворителей) и сухие методы синтеза карбонила вольфрама. Впервые гексакарбонил был синтезирован мокрым способом Джобом [1321]. Суспензию \(\text{WCl}_6\) в абсолютном эфире подвергалась одновременному воздействию реактива Гриньяра (например, \(\text{C}_6\text{H}_5\text{MgBr}\)) и окиси углерода. Выход карбонила вольфрама по этому методу был низким \((\sim 8,5\%)\). В 1940 г. А. Н. Несмеянов с сотр. [133—135] показали, что реактив Гриньяра играет в синтезе Джоба лишь роль восстановителя. Применив в качестве восстановителя цинковый или железный порошки, авторы разработали новый мокрый способ синтеза, который обеспечивает извлечение вольфрама в карбонил до 70%.

Мокрые способы синтеза карбонила мало пригодны для промышленных целей. Они связаны с применением легко воспламеняющихся органических растворителей высокой чистоты (эфир,
ацетон), потери которых в процессе синтеза и отделения карбонила значительны.

Более перспективны сухие методы, в которых восстановитель и окись углерода воздействуют на WCl₆ при отсутствии растворителя. Детальные исследования и технологическая разработка синтеза гексакарбонила из WCl₆ сухим способом выполнены Н. А. Белозерским, О. Д. Кричевской с сотр. [136—138] *

Для обеспечения максимального выхода карбонила необходимо, чтобы скорость восстановления хлорида была близка скорости присоединения молекул СО к возбужденному атому металла. Этого можно достигнуть выбором восстановителя и варьированием температуры и давления окиси углерода. В качестве восстановителя авторы рекомендовали железную стружку крупностью 2—3 мм, количество которой берут с избытком 100% от необходимого по реакции:

\[WCl₆ + 3Fe + 6CO = 3FeCl₂ + W(\text{CO})₆. \] (5.81)

Хлорид вольфрама смешивают с железной стружкой, смесь брикетируют под давлением 200—250 кгс/см². Брикеты диаметром 25 мм загружают в реактор для карбонилирования.

Оптимальный режим процесса: температура 200°С, давление окиси углерода 280 ат, продолжительность операции 48—70 ч. Скорость циркуляции реакционного газа 3—5 объемов в час. В этих условиях среднее извлечение вольфрама в карбонил составляет 85%. Образующиеся пары карбонила увлекаются потоком реакционного газа из реактора и конденсируются в охлаждаемых сборниках. Твердые частицы карбонила, не осевшие в конденсационной системе, улавливаются фильтром. Реакция карбонилирования со временем замедляется и прекращается вследствие образования на поверхности железной стружки пленки хлористого железа. Поэтому прямое извлечение в карбонил не превышает 85%. Если к остатку непрореагировавших хлоридов добавить свежую порцию железной стружки, реакция возобновляется. Однако полное превращение не достигается. Для утилизации вольфрама остатки от синтеза направляются на повторное хлорирование. Серой карбонил вольфрама содержит примеси карбонилов железа и меди, хлористые соединения вольфрама и других элементов.

Кристаллы карбонила очищают перегонкой с паром. Для более глубокой очистки перегнанные кристаллы обрабатывают в шаровой мельнице 5%-ным раствором едкого натра и проводят повторную перегонку с паром. Общее содержание примесей в дважды очищенном карбониле не превышает 0,005%. Описанная выше технология сложна, процесс малопроизводительный, прямой выход низкий (~85%). Однако в настоящее время нет более простой технологии.

Получение вольфрама из карбонила

Карбонил вольфрама при температурах выше 150° C разлагается с образованием металла и окиси углерода. Вследствие этого карбонил может быть использован для получения порошка вольфрама или вольфрамовых покрытий.

Кинетика и механизм термического разложения карбонила вольфрама рассмотрены в нескольких работах [139—141] *.

Основная реакция разложения

\[W (CO)_6 \rightarrow W + 6CO \] (5.82)

может протекать по гомогенному механизму (т. е. с образованием зародышей вольфрама в газовой фазе) и по гетерогенному механизму (на твердой поверхности). Какой из механизмов доминирует, определяют условия разложения: температура, концентрация карбонила в паровой фазе, геометрия аппарата.

На твердой поверхности разложение карбонила наблюдается при 150—160° C, тогда как реакция гомогенного разложения, требующая более высоких энергий активации, наблюдается при более высоких температурах [140, 141]. По данным работы [140], реакция разложения имеет первый порядок по концентрации карбонила:

\[\frac{dC_{W (CO)_6}}{d\tau} = KC_{W (CO)_6} , \] (5.83)

\[K = K_{\text{гом}} + K_{\text{гет}} A \frac{S}{V} , \] (5.84)

где \(K_{\text{гом}} \) — константа скорости гомогенного разложения;
\(K_{\text{гет}} \) — константа скорости гетерогенного разложения;
\(S \) — твердая поверхность в реакторе, \(\text{см}^2 \);
\(V \) — эффективный объем реактора, \(\text{см}^3 \);
\(A \) — постоянная.

Суммарная константа скорости разложения

\[K = 10^{14.1} \exp (-E/RT) , \] (5.85)

где \(E = 41 700 \text{ кал/моль} \) — кажущаяся энергия активации (в интервале 500—560 K). Для гомогенного разложения \(E_{\text{гом}} = 62 600 \text{ кал/моль} \); для гетерогенного разложения \(E_{\text{гет}} = 36 600 \text{ кал/моль} \).

Как порошки, так и вольфрамовые покрытия, полученные в результате термического разложения карбонила, содержат 2—3% C и 4—5% O. Мрацек и Кнапп [140] убедительно показали, что

* Следует отметить, что значительно более детально изучены закономерности разложения карбонила молибдена [122].
основным источником примесей углерода и кислорода служит вторичная реакция:

\[
2\text{CO} + \text{W} \rightarrow \text{WO}_2 + 2\text{C}, \quad (5.86)
\]

\[
\Delta G_{500}^\circ = -42 100 \text{ кал/моль}
\]

Менее вероятна реакция разложения окиси углерода:

\[
2\text{CO} \rightleftharpoons \text{C} + \text{CO}_2, \quad (5.87)
\]

\[
\Delta G_{500}^\circ = -20 200 \text{ кал/моль}.
\]

При нормальном давлении и использовании в качестве газа-носителя СО, СО₂ или водорода в интервале температур 400—800°C содержание углерода сохраняется на уровне ~2%, а кислорода — на уровне 4—5% [136, 138]. Углерод находится в порошках в свободном состоянии, а кислород в форме WO₂.

Насыщенная масса и величина частиц карбонильных порошков вольфрама сильно зависят от температуры и скорости подачи карбонила в реактор. Так, при увеличении температуры разложения карбонила от 350 до ~450°C насыщенная масса понижается от 2,5 до 0,1 г/см³ и соответственно размер частиц от 2—3 мкм до десятых долей микрона.

Для очистки карбонильных порошков вольфрама от примесей углерода авторы работ [136, 137] рекомендуют проводить обработку порошка в потоке влажного водорода при 1000 и 1200°C. Полное удаление углерода этим способом возможно, однако, лишь при длительности обработки ~40—50 ч. В результате такой обработки содержание кислорода в порошке возрастает. Для его удаления рекомендуется проводить восстановление порошка в сухом водороде при 900°C. В результате длительной обработки во влажном водороде при 1000—1200°C и восстановления водородом при 900°C карбонильный порошок укрупняется, уменьшается его удельная поверхность.

Из сказанного следует, что разложением карбонила вряд ли могут быть получены порошки вольфрама более чистые, чем порошки, получаемые восстановлением чистой трехокиси вольфрама водородом. Вместе с тем технология весьма сложна.

По-иному обстоит дело с использованием термического разложения карбонила вольфрама для получения вольфрамовых покрытий. Метод широко используется, так как прост в осуществлении, позволяет проводить осаждение в широком интервале температур (300—800°C). Плотные покрытия получают при пониженных давлениях (0,1—0,01 мм рт. ст.), отношении H₂ : W (CO)₆ = 100 : 1 [96, 122].

10. ПОЛУЧЕНИЕ ВОЛЬФРАМА ЭЛЕКТРОЛИЗОМ

Многочисленные попытки электролитического выделения вольфрама из водных растворов его солей не дали результатов. Трудность выделения вольфрама из водных растворов заключается, с одной стороны, в том, что вольфрам (VI) находится в водных растворах в составе аннона, движение которого к катоду,
Электролиз вольфраматов в расплавленных средах

Температуры плавления чистых щелочных вольфраматов расположены между 750 и 950°С; но смеси этих солей плавятся при более низких температурах, а эвтектическая смесь вольфраматов лития, калия и натрия—при 400°С. Соли плавятся без разложения, и поэтому пригодны для электролиза.

Ван Лимит, исследуя электролитическое получение вольфрама из расплавленной смеси вольфраматов натрия, лития и калия, получал вольфрам в виде кристаллов металлического порошка различной формы и покрытых [145]. Электролиз Na₂WO₄ проводили при 900—1000°С в тигле из феррохрома, ферроникеля или серебра, который служил катодом. Анодом может быть вольфрамовый стержень, графит или карбид вольфрама. При плотности тока 15 А/см² выход по току составлял 60—80%. Вольфрам отлагался на дне и стенках тигля. Процесс вели до заполнения межэлектродного пространства порошком вольфрама. При понижении температуры (<900°С) образуются тонкие легко окисляющиеся иглы вольфрама. Проведение электролиза возможно в нейтральной или слабощелочной ванне, в которой присутствуют ионы Na⁺ иWO₄²⁻.

Механизм электролиза состоит в первоначальном выделении на катоде металлического натрия, который восстанавливает вольфрамат:

\[6\text{Na} + \text{Na}_2\text{WO}_4 = \text{W} + 4\text{Na}_2\text{O} \] \hspace{1cm} (5.88)

При избытке вольфрамовой кислоты (более 5% свободного WO₃) взаимодействие описывается реакцией:

\[2\text{Na} + 2\text{WO}_2^{2-} \rightarrow 2\text{WO}_4^{2-} + \text{Na}_2\text{W}_2\text{O}_6 \] \hspace{1cm} (5.89)

Формуле Na₂W₂O₆ отвечает один из составов вольфрамовой бронзы. Состав бронз меняется по мере течения электролиза в сторону увеличения содержания натрия, что можно наблюдать по изменению цвета бронз от синего к желтому.

При температурах выше 1000°С вольфрамовые бронзы разлагаются с образованием вольфрама и WO₃.

Влияние концентрации WO₃ в расплаве на состав и структуру катодных осадков изучали А. Н. Барабошкин и др. [146—148]. С увеличением содержания WO₃ в расплаве с 10 до 67% (мол.) содержание натрия в полученном натрийвольфрамовых бронзах уменьшается. С повышением температуры во всех электролитах выделяется сплошной осадок вольфрама. При этом чем выше концентрация WO₃, тем выше температура съедения металла. Процесс может быть использован для получения плотных вольфрамовых покрытий толщиной 30—100 мкм, коррозионностойчивых и хорошо полирующихся.

Электролиз в расплаве фосфатов и боратов

Расплавленные фосфаты натрия легко растворяют вольфрамовый ангидрид и благодаря своей легкоплавкости являются весьма удобными электролитами для получения вольфрама. Гартман разработал процесс получения вольфрамового порошка в ванне, содержащей WO₃, растворенного в смеси пиро- и метафосфатов натрия [149]. Процесс в дальнейшем исследовали Лео и Шен [150], определившие оптимальные режимы. Электролиз вели в графитовом тигле, служашем катодом, при 900°С и плотности тока 0,35 А/см². Состав ванны, моль: 7Na₄P₂O₇, 3NaPO₃, 4WO₃, 1,5NaCl.

Отношение пиро- и метафосфатов, равное 7:3, отвечает эвтектическому составу и наименьшей температуре электролита. Добавление NaCl снижает вы-
ход по току, но увеличивает электропроводность расплава, сохраняя неизмененным расход мощности. При этих условиях на графитовом аноде выделяется ~500 г вольфрама на 1 кВт·ч; выход по току ~88%. После отмывки получается порошок, содержащий 99,87% вольфрама.

Финк и Ма проводили исследования непосредственно с концентратами, применяв в качестве электролита фосфатную и боратную ванны [151]. Они установили, что в расплавленных фосфате и борате натрия растворяется весь вольфрам, содержащийся в концентрате. Желеzo концентрата связывается в силикат, образуя керамический в электролите шлак. Часть железа остается в виде нерастворимого окисла. Сера, мышьяк и сурыма улетучиваются в форме окислов; кальций растворяется в виде силиката и бората; марганец растворяется в виде Na₂MnO₄ и частично образуется борид.

Фосфатная ванна состояла из 1,75 ч. широ- и метаfosфофатов (7 молей Na₃P₂O₅ на 3 моля NaPO₃) на 1 ч. вольфрамового концентрита; температура 1050—1300°С; плотность тока 50 А/дм²; начальная концентрация WO₃ в ванне 30—40%. Извлечение вольфрама из концентратов составило 95% при выходе 505,1 г вольфрама на 1 кВт·ч. Чистота порошка 99,7% W.

Боратная ванна состояла из 1,5 ч. Na₂B₄O₇ на 1 ч. концентрате; температура 1050—1300°С, плотность тока 50 А/дм²; получено 417 г вольфрама на 1 кВт·ч. Вольфрамовый порошок содержал 99,6% W.

Способ электролитического получения вольфрама из его окисных соединений в расплаве фосфатов и боратов натрия усовершенствовал Дон [152]. Электролиз проводили в графитовых тиглях с внутренним диаметром 75—200 мм и глубиной 150—280 мм, вмещающих 1—15 кг электролита. Тигель является анодом, катодом служит графитовый стержень, находящийся в центре тигля.

Оптимальные результаты были получены с электролитом состава, часть (по массе): Na₃P₂O₅ 7; Na₂B₄O₇ 4; NaCl 2.

При электролизе шеелита в связи с выделением на катоде некоторого количества кальция в ванну периодически добавляют 1% B₂O₃ для его связывания. При содержании в исходном материале ~2% Fe происходит его осаждение с вольфрамом, которое можно предотвратить добавкой в электролит 2% (по массе) CaF₂ и 1% (по массе) ZnO. Содержание WO₃ в электролите можно поддерживать в пределах от 5 до 60% (по массе). При большей концентрации начинает выделяться вольфрамовая бронза, при меньшей — возрастает содержание примесей.

Температура электролиза 1000°С. Плотность тока в пределах от 5 до 300 А/дм² не влияет на качество осажденного вольфрама, но с ее увеличением размеры зерен металла уменьшаются.

Горнорудное управление США провело работу по сравнению основных свойств электролитического порошка, полученного из шеелитового концентратата (в фосфатном электролите), и порошка, полученного водородным восстановлением трехокиси вольфрама [153].

Электролитические порошки имеют повышенное содержание примесей железа и кальция. Они могут быть использованы для получения некоторых сплавов или должны быть рафинированы методом электролиза.

Электролиз в хлоридно-фторидных и смешанных расплавах

В работах Гоумба и др. [154] было показано, что для электролиза WO₃ успешно могут быть использованы хлоридно-фторидные (№ 1) и смешанные фосфатно-боратно-хлоридные (№ 2) электролиты составов, % (по массе):

<table>
<thead>
<tr>
<th>Электролит № 1</th>
<th>Электролит № 2</th>
<th>Электролит № 1</th>
<th>Электролит № 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO₃ 30</td>
<td>WO₃ 20</td>
<td>NaCl 40</td>
<td>Na₂B₄O₇ 4</td>
</tr>
<tr>
<td>KAI₃F₄ 9</td>
<td>Na₃P₂O₅ 60</td>
<td>NaF 21</td>
<td>NaCl 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CaF₂ 2</td>
</tr>
</tbody>
</table>

Были исследованы технические варианты переработки вольфрамитов и шеелитовых концентратов с использованием электролиза в фосфатно-боратно-хлоридных расплавах [155—157]. Вольфрам получали непосредствен-
ным электролизом концентратов или электролизом продуктов, полученных после предварительной обработки концентратов. Один из способов предварительной обработки — высокотемпературное разложение концентратов, заключающееся в следующем: шеелит или вольфрамит растворяют при 1080° С в системе несмешивающихся расплавов — хлорида натрия и силиката натрия. Образующийся вольфрамат натрия переходит в верхнюю хлорную фазу, а окислы кальция, железа и марганца остаются в нижнем силикатном слое. Хлорно-вольфраматный расплав служил исходным сырьем для электролитического получения металла.

При электролитическом получении вольфрама из вольфрамата независимо от состава ванны металл сильно загрязнен примесями. Из хлоридно-вольфраматного расплава выделяется металл высокой чистоты. Состав лучшего электролита: 1,5 моля NaPO₃ и 2 моля B₂O₃ на 1 моль WO₃. Выход по току находится на уровне 80—85% [155].

Электролитическое получение вольфрама из шеелита проводится тремя способами [156, 157]: 1) непосредственно из шеелита; 2) с предварительным разложением шеелита соляной кислотой; 3) с предварительным получением расплава Na₃WO₄ в NaCl.

Сопоставление показателей различных вариантов позволило сделать вывод, что способ, включающий предварительное кислотное разложение концентратов, наиболее экономичен. Способ электролитического получения вольфрама из шеелита с предварительным высокотемпературным разложением требует больших затрат на реакты и больше применим к переработке вольфраматных концентратов.

Получение вольфрама электролизом расплава солей, в который вводят шеелитовый концентрат, занимает промежуточное место. Основной недостаток этого способа — накопление примесей в электролите, в результате чего нарушается процесс выделения металла на катоде и ухудшается качество получаемого вольфрама. Введение окиси бора ликвидирует вредное влияние окиси кальция. Но по мере протекания электролиза в этом случае необходимо удалять соль, образующуюся на поверхности электролита.

Из обзора приведенных работ следует, что электролитические методы получения вольфрамовых порошков из концентратов находятся в стадии разработки. Недостаточно ясны и области использования этих методов.

Электролитическое рафинирование вольфрама

Работы ряда советских исследователей были посвящены изучению электролитического рафинирования вольфрама [158—161]. Было установлено, что лучшими электролитами являются расплавы хлоридов и фторидов щелочных металлов. Рафинирование ведут с растворимым вольфрамосодержащим анодом; на катоде выделяется чистый металл. Анодом могут быть отходы вольфрама или вольфрамовый порошок, полученный электролитическим способом непосредственно из концентрата и др.

В работах В. С. Балихина, В. А. Резниченко и др. детально исследовался процесс электролитического рафинирования вольфрама в различных средах. Оптимальные результаты получены с расплавом, содержащим, %: 60 NaCl; 15 NaF; 25 WO₃ [159, 161]. Изучение физико-химических свойств электролита позволяло предположить, что существующий в расплаве ион WO₃F₃⁻ концентрации и диффузии переносится в прикатодную область; разряд на катоде происходит по схеме:

\[\text{WO}_3\text{F}_3^- + 6e = W + 3\text{O}^{2-} + 3\text{F}^- \] \hspace{1cm} (5.90)

Освободившиеся при этом анионы мигрируют к аноду. На растворимом вольфрамовом аноде протекают реакции:

\[3\text{O}^{2-} \rightarrow 6e = 3\text{O}; \] \hspace{1cm} (5.91)

\[\text{W} + 3\text{O} = \text{WO}_3; \] \hspace{1cm} (5.92)

\[\text{WO}_3 + 3\text{F}^- = \text{WO}_3\text{F}_3^- \] \hspace{1cm} (5.93)

С повышением плотности тока потенциал вольфрамового анода сдвигается в положительную сторону вследствие концентрационной поляризации либо
из-за пассивации анода окислами вольфрама [реакция (5.92)] при недостаточной скорости их растворения в расплаве [реакция (5.93)].

При содержании в расплаве 15 и 20% W величина анодного выхода по току быстро растет с повышением концентрации фтористого натрия до значения, соответствующего процентному содержанию его в оксифторвольфрамате 3NaF·WO₃. Выход вольфрама на катоде в этих условиях близок к 100%. Рекомендуемые плотности тока: $D_a = 0,1$ A/cm²; $D_k = 0,4 \div 1,0$ A/cm², температура 880 ± 200 °C.

Полупроволенные испытания электролитического рафинирования вольфрамовых отходов проводили в электролизере из нержавеющей стали диаметром 300 и высотой 650 мм с крышкой, имеющей водоохлаждаемую кассету и сальниковые устройства для установки катода. Катод — молибденовый стержень диаметром 16 мм. В реторту устанавливали стальной и графитовый стаканы. Анодный материал — обломки вольфрамовых штампов (в количестве 30 кг) укладывали по стенке графитового стакана или в пространство, образованное стаканом и графитовой диафрагмой. Электролит в количестве 32 кг засыпали в графитовый стакан после загрузки анодного материала. Плавление электролита и электролиз вели в атмосфере азота.

Первый электролиз для проработки электролита и осаждения на поверхности молибденового катода плотного слоя вольфрама идет при низкой плотности тока ($D_k = 0,2 \div 0,3$ A/cm²). В дальнейшем такой катод допускает быстрый подъем токовой нагрузки от 0,5 до 2 A/cm².

Полученные катодные осадки сначала обрабатывают в слабом растворе щелочи, затем промывают (в 1%-ном растворе соляной кислоты и дистиллированной воды) и сушат при 60—80 °C. Средний катодный выход по току равен анодному и составляет 96%. Истинный выход по току выше, так как часть металла осыпается при извлечении осадка из электролита и теряется при отмывке.

В процессе электролиза концентрация вольфрама в электролите не снижается до степени выработа анода 50—55%, что свидетельствует о равенстве катодных и анодных выходов по току. В дальнейшем расплав начинает обедняться по вольфраму, а при 70—75% выработы анода процесс необходимо прекращать либо догружать анодный материал. Основная масса катодного металла представлена фракциями: —1 ± 0,4 мм (35%) и —0,4 мм (56%). Чистота полученного вольфрама, %: C 3 ± 7·10⁻²; Ni 1 ± 3·10⁻³; Fe 4 ± 18·10⁻³; Si 1 ± 4·10⁻³; Cr 2 ± 8·10⁻⁴; V 2 ± 3·10⁻⁴; Mo 2 ± 4·10⁻⁴; Ti 7 ± 8·10⁻⁴; Al 1 ± 5·10⁻⁴. Содержание примесей в анодном материале, %: C 9·10⁻³; Ni 3·10⁻²; Fe 5·10⁻²; Si 4·10⁻³; Cr 1·10⁻³; V 3·10⁻⁴; Mo 2·10⁻⁴; Ti 2·5·10⁻³; Al 9·10⁻³.

По большинству примесей катодные вольфрамовые порошки приблизительно на порядок чище рафинируемого материала. Однако порошки крупнозернистые, они пригодны для плавки или превращения в компактные заготовки методом горячего изостатического прессования.

ГЛАВА VI
ПРОИЗВОДСТВО КОМПАКТНОГО ВОЛЬФРАМА

1. ВВЕДЕНИЕ

В конце XIX и начале XX в., на протяжении примерно 20 лет, проводились интенсивные исследования по разработке способа получения ковкого вольфрама для нитей электрических ламп [1, 2].

Первоначально предложенные способы производства вольфрамовой проволоки для ламп накаливания были основаны на при-
готовлении пластичной массы из тонкого вольфрамового порошка, смешанного с пластикатором. Пластичную смесь продавливали через тонкое отверстие, полученные при этом нити после просушки нагревали прямым пропусканием электрического тока в атмосфере водорода или атмосфере из смеси водорода с азотом. В результате нагревания влага и органические составляющие — пластикаторы — удалялись, а оставшийся пористый вольфрамовый скелет прокаливали при высокой температуре. Происходили рост зерен, спекание и усадка, которые приводили к получению относительно прочной нити. Этим методом, получившим название «ширици-процесс», в 1906—1911 гг. изготавливали большую часть вольфрамовой проволоки. В качестве пластикаторов применяли растворы декстрина, сахара, траганта, парафина и другие вещества.

Далее был разработан способ получения пластичной массы без применения органических связующих («коллоидный метод» Кужеля). По этому способу пластичную массу, состоящую из тонких частиц вольфрама, получали путем распыления металла с вольфрамовых электродов электрической дуги, погруженной в воду. Пластичность в данном случае обусловливалась образованием коллоидных форм низших окислов вольфрама, выполнивших роль защитного коллоида для тончайших частиц металлического вольфрама. Из полученной массы выдавливали нити, которые прокаливали в токе водорода. Низшие окислы вольфрама при этом восстанавливались.

Метод пластикования был в дальнейшем использован для получения монокристальной вольфрамовой проволоки (метод Пинча). В одном из процессов в качестве пластикатора использовали жидкую или тестообразную амальгаму, например кадмиво-висмутовую амальгаму следующего состава, %: Cd 42, Bi 5, Hg 53. При нагревании электротоком нитей, полученных из пасты, амальгама возгонялась.

Ряд процессов был основан на применении в качестве связующего меди и никеля. Смесь вольфрамового и медного порошков, содержащую 35% Cu, прессовали в штабики, которые затем спекали при температуре несколько выше температуры плавления меди. Изготовленные таким образом штабики хорошо поддаются ковке и волочению благодаря наличию вязкой медной прослойки между частицами вольфрамового порошка. Полученную проволоку нагревали током до высокой температуры, при которой медь возгонялась. В случае применения вместо меди никеля последний удаляли прокаливанием проволоки в вакууме.

Среди других способов получения вольфрамовых нитей следует упомянуть способ Юста и Ханнемана, состоящий в осаждении вольфрама на нагретой до 1000—1200° С угольной нити из газовой фазы при восстановлении водородом гексахлорида вольфрама. Покрытую проволоку нагревали до ярко-белого калия в водороде. При этом угольная нить «растворялась» в вольфраме, образуя карбид вольфрама. Полученную трубчатую нить прокаливали
во влажном водороде для удаления углерода, в результате оставалась компактная нить чистого вольфрама, подобная нити, получаемой методом шприцевания с тем отличием, что она имела трубчатое сечение.

Все рассмотренные способы ограничивались получением хрупких вольфрамовых нитей. В 1909 г. Кулидж разработал способ производства ковкого вольфрама, в основных чертах сохранившийся до настоящего времени [3]. Тонкий порошок вольфрама высокой чистоты прессуется в штабики, которые затем подвергаются спеканию при температурах несколько ниже точки плавления вольфрама. В результате получается прочный штабик компактного металла, который в нагретом состоянии обладает ковкостью, но хрупок на холоду. Оказалось, что в процессе горячей ковки по мере увеличения степени обжатия пластичность вольфрама возрастает в такой степени, что можно получить тончайшие вольфрамовые нити (до 0,01 мм).

Процесс Кулиджа основан на методе порошковой металлургии, впервые предложенном в 1826 г. П. Г. Соболевским [4] применительно к производству изделий из платины. Использование этого метода для производства ковкого вольфрама обусловило быстрое развитие электроламповой промышленности. Производство компактного вольфрама и вольфрамовых изделий в настоящее время (как и ранее) базируется в основном на использовании метода порошковой металлургии. Технология включает процессы получения порошкообразного вольфрама; формование заготовок и их спекание; механическую обработку спеченных заготовок с получением изделий — проволоки, ленты, кованых деталей различного назначения.

Наряду с методом порошковой металлургии для получения компактного вольфрама в настоящее время развивается плавка (дуговая и электроннолучевая), преимущественно для крупногабаритных изделий.

Однако плавка принципиально неприменима для производства основных марок вольфрама, обычно содержащих равномерно и тонкораспределенные присадки (кремнеземистая присадка и Al₂O₃ для изготовления проволоки, присадки окислов тория, редкоземельных металлов для придания жаропрочности или эмиссионных свойств различным изделиям, используемым в электро-технике, электронике и других областях).

Длительное время методом порошковой металлургии получали заготовки из вольфрама относительно малых размеров (в форме штабиков), нагревание которых в процессе спекания осуществляется прямым пропусканием электрического тока. В последние годы этот недостаток в значительной мере преодолен благодаря разработке технологии изготовления крупногабаритных заготовок, включающей новые способы формования, спекания и механической обработки крупногабаритных заготовок из вольфрамовых порошков.
В данной главе наряду с традиционной («штабиковой») технологией рассмотрены новые направления технологии получения компактного вольфрама методами порошковой металлургии, а также плавка вольфрама и получение монокристаллов. Научные основы получения компактных металлов из порошков методами порошковой металлургии рассмотрены в ряде монографий [5—9].

2. ПРОИЗВОДСТВО ВОЛЬФРАМОВЫХ ШТАБИКОВ

Прессование штабиков из вольфрамовых порошков

Характеристика вольфрамовых порошков, полученных восстановлением трехокиси вольфрама водородом и используемых для производства штабиков, дана выше в п. 6 гл. V. Порошки марки ВА, предназначенные для производства проволоки, содержат равномерно распределенную кремнеземистую и алюминиевую присадки (0,32% K₂O; 0,45% SiO₂; 0,03% Al₂O₃), порошки марки ВТ содержат присадки окиси тория (от 0,7 до 5%), порошки марки ВЛ — присадку La₂O₃ (~1%), марки ВИ — присадку Y₂O₃ (~3%), марки ВМ — кремнеземистую и ториевую присадки (0,32% K₂O; 0,45% SiO₂; 0,25% ThO₂).

Из порошков вольфрама в зависимости от марки и назначения прессуют штабики квадратного сечения, размеры которых изменяются в пределах: длина от 280 до 600 мм, сечение от 8×8 до 40×40 мм.

Штабики относительно малого сечения (от 8×8 до 15×15 мм) главным образом идут на изготовление проволоки, а большего сечения — на изготовление пластин, ленты и производство фасонных изделий.

Прессование ведут в стальных разъемных прессформах при удельном давлении прессования 1,5—6 тс/см² на гидравлических прессах мощностью от 200 до 2000 тс с двумя цилиндрами: вертикальным для нагружения пuhanсона и горизонтальным для сдавливания бочин прессформы в процессе прессования. Коэффициент бокового давления при прессовании вольфрамовых порошков (отношение бокового давления к вертикальному) равен ~0,3.

Частицы вольфрама на холоду практически не поддаются пластичной деформации. Поэтому в процессе прессования уплотнение порошка происходит в основном вследствие взаимного перемещения частиц, их заклинивания и лишь в малой степени вследствие стягивания или скальвания угловых выступов, ребер и поверхностных шероховатостей. Это ограничивает достижение высокой плотности штабиков. Остаточная пористость составляет 30—40%.

Предельное давление прессования, выше которого в прессуемой заготовке появляются расселенные трещины и скальвание (результат проявления упротого последействия), для вольфрамовых порошков находится в пределах 4—6 тс/см² (в зависимости от гранулометрии порошка). Порошки с более широким по величине набо-
ром частиц обладают большой насыпной массой и дают более плотные заготовки вследствие заполнения мелкими частицами зазоров между крупными частицами. Для достижения заданной плотности заготовки в случае мелкозернистого порошка требуется более высокое удельное давление прессования в сравнении с порошком более крупнозернистым [2].

Известно, что вследствие трения порошка о стенки прессформы и торцов пuhanсонов передвижение частиц, прилегающих к станкам, тормозится, что вызывает неравномерное уплотнение прессуемой заготовки. Для уменьшения внешнего и межчастичного трения к порошку перед прессованием добавляют жидкую смазку (раствор глицерина в спирте), что обеспечивает более равномерное распределение давления в прессуемой заготовке.

Для получения спрессованных штабиков однородного качества и без дефектов необходимо равномерно распределять навеску порошка в прессформе. Хорошие результаты даёт заполнение прессформы на вибрационных столах [2]. Для последующей (после первого спекания) проверки равномерности прессования в середине спрессованного штабика керном наносят небольшую метку (см. ниже).

Спекание штабиков

Apparatura и режимы спекания. Спекание вольфрамовых штабиков осуществляется в водороде в две стадии. Первая стадия — предварительное спекание при 1150—1300°С — имеет своим назначением некоторое упрочнение штабика, необходимое для дальнейшего обращения с ним; восстановление пленок окислов, оставшихся на поверхностях частиц в заготовке (поры которой в большей части сквозные и сообщаются с открытыми порами на поверхности заготовки); повышение электропроводности штабика. Вторая стадия — высокотемпературное спекание («сварка»), проводимое при температуре около 3000°С и осуществляемое пропусканием электрического тока через штабик, формирует окончательную структуру штабика, наиболее благоприятную для дальнейшей обработки штабиков давлением. При первом спекании штабики заметно упрочняются и претерпевают небольшую усадку, достигающую 2—3% первоначальных размеров. Температура начала заметной усадки штабиков зависит от величины зерен порошка (рис. 51) [1]. Упрочнение штабика после предварительного спекания происходит вследствие восстановления пленок окислов и поверхностной диффузии атомов к местам контакта частиц. При этом общая поверхность межчастичного контакта увеличивается, а поры имеют тенденцию к сфероидизации.

Для низкотемпературного спекания применяют электрические муфельные печи с алундовым муфелем. Нагревателем служит спираль из молибденовой проволоки. Для защиты молибденового нагревателя от окисления кожух печи, теплоизолированный шамот-
ным кирпичом, делают герметичным и в него через патрубок в крышке корпуса печи непрерывно подают водород.

Спрессованные штабики укладывают в никелевые или стальные лодочки, на дно которых насыпан тонкий слой вольфрамового порошка. В лодочку одновременно укладывают до 50 штабиков. Выдержка колеблется от 30 мин до 2 ч в зависимости от размеров заготовок. После первого спекания проводят проверку на однородность плотности штабиков. Для этого штабик помещают накерненной меткой на острие ножа. Различие в массе обоих концов не должно превышать 1%.

Рис. 51. Зависимость начала линейной усадки вольфрамовых штабиков от температуры и величины частиц вольфрамового порошка:
1 — крупнозернистый порошок \(d_{cp} \cong 3,5 \text{ мкм} \); 2 — мелкозернистый порошок \(d_{cp} \cong 0,6 \text{ мкм} \)

Рис. 52. Схема аппарата для «сварки» вольфрамовых штабиков:
1 — подводящие ток шины; 2 — токоподводы к контактам; 3 — верхний неподвижный контакт; 4 — штабик; 5 — охлаждаемый водой контакт; 6 — контактные вольфрамовые зажимы («щипцы»); 7 — нижний подвижный контакт; 8 — плата; 9 — противогруз.

Высокотемпературное спекание осуществляется в специальном «сварочном» аппарате (рис. 52). Штабик вертикально закрепляют между двумя зажимными контактами, состоящими из медных-воловок, в которые вмонтированы две скрепленные пружиной вольфрамовые пружины — щипцы. В головках имеются каналы, по которым циркулирует охлаждающая вода. Охлаждаемая водой медная труба, подводящая ток к нижнему контакту, проходит через отверстие в стальной плате, имеющей по периферии кольцевой паз. В паз уложено резиновое кольцо, на которое опирается медный колпак с двойными стенками, охлаждаемый водой. Под колпак непрерывно поступает сухой водород со скоростью 0,8—1,0 м³/ч.
Нижний контакт должен быть подвижным, так как в процессе сварки происходит значительная усадка штабика (его длина уменьшается на 15—17%, и жесткое закрепление может повлечь за собой разрыв штабика. Подвижность нижнего контакта обеспечивается подводом тока при помощи гибких шин. Вес нижнего контакта уравновешивается противогрузом.

Мощность, потребляемая на «сварку» штабика, расходуется в основном на излучение накаленной поверхности штабика.

Для температуры сварки 2930° С интенсивность излучения равна 203 Вт/см². Пользуясь этими данными, можно подсчитать энергию, излучаемую всей поверхностью штабика. Например, для штабиков размерами 40×40×650 и 15×15×600 мм мощность на излучение равна 210 и 73 кВт соответственно. Это количество излучаемой энергии составляет 60—70% от общей затраты энергии на сварку штабика, так как в приведенном расчете не учтены энергия, излучаемая торцовыми поверхностями штабика и зажимающими концы штабика вольфрамовыми щипцами, а также тепло, теряемое теплопередачей конвекцией через водородную атмосферу.

Электросопротивление вольфрамового штабика невелико (при относительно большом сечении и небольшой длине), поэтому нагрев его до 3000° С требует большой силы тока при низком напряжении. Так, для штабиков сечением 10×10 мм требуется сила тока 2500 А, а для штабиков 40×40 мм до 10000—12000 А. Напряжение на концах штабиков составляет 10—20 В. Сварочные аппараты питаются от понижающего трансформатора, а регулировка мощности осуществляется потенциал-регулятором или автотрансформатором, подключаемым к высокой стороне трансформатора.

Сила тока, пропорциональная затрачиваемой мощности, определяет температуру штабика. Поэтому при постоянном сопротивлении штабиков (постоянство размеров, плотности и постоянство гранулометрии исходного порошка) режим сварки устанавливают и регулируют по силе тока. Для этого перед сваркой партии штабиков на одном-двух пробных штабиках определяют силу тока, необходимую для переплавки штабика — ток переплавки 1.

Режимы сварки зависят от марки вольфрама. Сварка штабиков из чистого порошка вольфрама (ВЧ) и с присадками окислов тория, лантана или иттрия (ВТ, ВЛ, ВИ) проводится в одну стадию. За 12—15 мин силу тока увеличивают до отвечающей максимальной температуре 2800—3000° С (88—93% от силы тока переплавки штабика), поддерживают при максимальной силе тока 12—20 мин, после чего ток выключают.

1 «Сварка» штабиков вольфрама марок ВА, ВМ проводится по двустадийному режиму. Первая стадия — при максимальной силе тока ~48% от тока переплавки (~2000—2200° С). На этой стадии

1 Для штабиков иного сечения значение силы тока переплавки может быть найдено по формуле: \(I_2 = I_1 \sqrt{a_2^2/a_1^2} \), где \(I_1 \) и \(I_2 \) — сила тока переплавки штабика со сторонами сечения \(a_1 \) и \(a_2 \) соответственно [12].
удаляется подавляющая часть кремнеземистой присадки, так как в штабике еще сохраняется открытая пористость. Вторая, высокотемпературная, стадия проводится при силе тока 93% от тока переплавки (2900—3000°С). Каждая из стадий осуществляется в отдельном аппарате. Подъем температуры на обеих стадиях продолжается 8—10 мин, выдержка на максимальной температуре 12—15 мин.

Проведение в одном аппарате последовательно первой и второй стадий спекания не рекомендуется по следующим причинам: испаряющаяся на первой стадии кремнеземистая присадка конденсируется на стенках аппарата. Налет поглощает влагу из воздуха при подъеме колпака, что повышает влажность водорода при последующих операциях. Острая осушка водорода на первой стадии сварки несущественна. На второй, высокотемпературной, стадии сварки штабиков вольфрама марок ВА и ВМ влажность водорода существенно влияет на качество конечной продукции. В сварочный аппарат должен поступать водород с точкой росы не выше —15°С. Более высокое содержание влаги в водороде приводит к тому, что остаточное содержание кремнеземистой присадки в штабике оказывается выше оптимального, что влияет на свойства получаемой из штабиков проволоки (понижается жаропрочность, не образуется требуемая структура после рекристаллизации) [11, 12].

Применение хорошо осушенного водорода при высокотемпературном спекании важно также вследствие того, что окисляющее действие паров воды по отношению к вольфраму в области высоких температур (выше 1500°С) возрастает с увеличением температуры, в то время как в области температур, применяемых для низкотемпературного восстановления вольфрама (ниже 1000°С), наоборот, ослабляется. Причина этого различия заключается в том, что выше 1500°С реакция окисления вольфрама парами воды протекает с образованием газообразной двуокиси вольфрама:

\[\text{WO}_2 \text{ (газ)} + 2\text{H}_2 \rightarrow \text{W (тв)} + 2\text{H}_2\text{O (газ)}. \] \hspace{1cm} (6.1)

Теплота, затрачиваемая на испарение \(\text{WO}_2 \), изменяет знак теплоты реакции, которая выше 1500°С становится экзотермической в сторону восстановления (\(\Delta H = \sim -38 \text{ ккал} \), в то время как ниже 1000°С эта же реакция эндотермична (\(\Delta H_{70^0 \text{С}} = +7,6 \text{ ккал} \)). Соответственно выше 1500°С константа реакции имеет выражение \(K = \rho_{\text{Н}_{2}\text{O}} / \rho_{\text{H}_{2}} \rho_{\text{WO}_2} \) и с повышением температуры она быстро уменьшается (в противоположность увеличению \(K = \rho_{\text{Н}_{2}\text{O}} / \rho_{\text{H}_{2}} \) в условиях восстановления \(\text{WO}_2 \) водородом ниже 1000°С [81]):

<table>
<thead>
<tr>
<th>Температура, К</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K \cdot 10^{-4})</td>
<td>45</td>
<td>7,7</td>
<td>2,38</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Следовательно, окислительное воздействие паров воды в условиях «сварки» вольфрама с повышением температуры резко усиливается и достаточно весьма небольшой концентрации \(\text{H}_2\text{O} \) в \(\text{H}_2 \), чтобы началось окисление \(\text{W} \) до \(\text{WO}_2 \) в более горячих участках.
(например, в глубине открытых пор) и наиболее мелких (более активных) кристаллах. Пары образовавшейся \(\text{WO}_2 \), возгоняясь, тут же восстанавливаются на поверхностях более крупных кристаллов, в первую очередь на менее горячих участках (на поверхности и на ребрах штабика), что ведет к неравномерному укреплению зерен металла главным образом в наружных слоях штабика. Неоднородная крупнозернистая структура штабика неблагоприятна для обработки давлением.

Физико-химические процессы, протекающие при спекании («сварке») штабиков

При спекании происходит ряд сложных физико-химических процессов, в результате которых брикет-конгломерат спрессованных частиц превращается в компактный металл с заданной структурой и химическим составом. Основные явления при спекании: усадка, рекристаллизация, испарение части присадочных соединений и примесей.

Усадка и рекристаллизация. В процессе выдержки штабика при максимальной температуре спекания (~3000°С) совершаются основные изменения структуры штабика: происходит большая усадка (общая пористость сокращается до 10—15%), число пор резко сокращается, они превращаются в изолированные сфероидальные поры, зерна вольфрама растут, образуются новые межкристаллические границы, по которым устанавливается металллическое сцепление, подобное межзеренному контакту и сцеплению в обычных монолитных металлах, создается характерная для литых и рекристаллизованных металлов полиэдрическая структура.

Усадка при спекании («сварке») происходит в результате деформации вольфрамовых кристаллов в штабике под влиянием сил поверхностного натяжения, которые стремятся сократить свободную поверхность пор и тем самым их общий объем (хотя отдельные поры могут увеличиваться вследствие коагуляции). В области температур, близких к точке плавления металла (88—93% \(T_{пл} \)), развивается интенсивная самодиффузия атомов в объеме кристалла по вакансиям его кристаллической решетки.

Под влиянием сил поверхностного натяжения эта самодиффузия реализуется в виде объемной деформации кристаллов типа ползучести или вязкого течения, и металл затекает в поры, уменьшая их объем. Под влиянием поверхностного натяжения происходит также и сфероидизация пор, уменьшающая их поверхность. Принципиально сфероидизация пор может происходить и за счет поверхностной самодиффузии атомов без уменьшения объема пор. Однако поверхностная самодиффузия не может привести к уменьшению объема пор, для чего необходима объемная деформация кристаллов.

Степень и скорость уплотнения при спекании зависят в большой степени от состояния исходного порошка. Кристаллы металлических порошков всегда характеризуются большей концентрацией
дефектов, чем кристаллы литого, отожженного металла. При высокой температуре спекания дефекты способствуют текучести, поэтому чем выше концентрация дефектов в кристаллах к началу выдержки на максимальной температуре спекания, тем интенсивнее проходит усадка. Во время изотермической выдержки на максимальной температуре кристаллы диффузионно «заличиваются», концентрация дефектов уменьшается, и скорость усадки быстро затухает, практически становясь незаметной примерно через 15—30 мин при максимальной температуре спекания штабиков.

Мелкоэзернистый порошок, восстановленный при низких температурах, состоит из кристаллов с повышенной концентрацией дефектов, причем концентрация дефектов на поверхности выше, чем в объеме кристаллов. Поверхностные дефекты при спекании диффундируют в глубь кристаллов, дополнительно увеличивая объемную концентрацию дефектов. Брикет, спрессованный из мелкоэзернистого порошка, имеет большую суммарную поверхность пор, на которой сосредоточены силы поверхностного натяжения — действующие силы усадки. По совокупности всех этих причин брикет из мелкоэзернистого порошка уплотняется при спекании быстрее и до меньшей остаточной пористости, чем из крупноэзернистого порошка [14].

Одновременно с усадкой, когда достаточно увеличиваются контактные участки, происходит и рекристаллизация металла, которая приводит к сокращению межкристаллических границ. Оба эти процесса — усадка и рекристаллизация — развиваются в направлении уменьшения общего запаса свободной энергии системы за счет уменьшения поверхностной энергии, сосредоточенной на свободных поверхностях пор, и пограничной энергии, сосредоточенной на межкристаллических границах, а также вследствие уменьшения концентрации дефектов кристаллов.

У мелкоэзернистого порошка, обладающего большей удельной поверхностью, при спекании происходит более интенсивная рекристаллизация. Поэтому при заданном режиме спекания из мелкоэзернистого порошка (например, со средним размером частиц 1—2 мкм) можно получить «сваренный» штабик с более крупными зернами, чем из крупноэзернистого порошка (например, со средним размером частиц 4—5 мкм).

Однородность структуры штабика и средняя величина зерен сильно зависят от температурного режима спекания.

Вследствие излучения тепла поверхностью штабика всегда имеется различие в температурах наружной и центральной его частей. Температурный перепад от центра к периферии составляет примерно 150° С. Вследствие этого в центральной части штабика, имеющей более высокую температуру, может начаться быстрый рост кристаллов, продолжающийся за счет мелких периферийных частиц и приводящий к образованию крупных кристаллов. Перепад температур имеется также в продольном направлении — от средней части к концам штабика; он может вызывать рост крупных
крystallov в осевом направлении. В известных условиях при длительном нагревании можно получить штабик, состоящий из нескольких монокристаллов.

При равномерном распределении температуры конечная величина кристаллитов в штабике должна быть тем больше, чем выше температура. Однако опыт показал, что усиленный рост кристаллов наблюдается в определенной области температуры примерно между 2600 и 2800°С (рис. 53) [15]. В этой области время, необходимое для образования зародыша, велико; образуется мало центров кристаллизации, что приводит к крупнозернистой структуре. При высоких температурах в единицу времени возникает больше зародышей и конечная величина зерен меньше.

Регулируя скорость нагревания в зоне усиленного роста кристаллов (2600—2800°С), можно влиять на структуру штабика. При быстром подъеме температуры получается мелкокристаллическая, при медленном нагревании — крупнокристаллическая структура.

Рис. 53. Зависимость величины кристаллов штабика от температуры спекания (по Дрефферсу [15])

Поведение примесей и присадок и их влияние на структуру штабика

Важную роль в формировании структуры вольфрамового штабика при спекании, в особенностях в регулировании процесса рекристаллизации вольфрамовой проволоки при ее эксплуатации, играют примеси и присадки, специально вводимые в вольфрамовый порошок.

Наиболее распространенными являются присадки окислов Na₂O, K₂O, SiO₂, вводимые в виде силикатов натрия или калия, а также Al₂O₃ и ThO₂. Кроме того, в порошке обычно присутствуют примеси CaO и Fe₂O₃, которые содержались в исходной вольфрамовой кислоте. Большая часть присадок (Na₂O, K₂O, SiO₂) улетучивается в процессе спекания. Вследствие этого они либо не влияют на рост кристаллов в штабике (если примесь улетучивается до начала усадки), либо даже препятствуют росту, если улетучивание происходит при температуре, когда началась усадка, и удаляющаяся примесь нарушает контакт между частицами. Установлено, что летучие присадки способствуют удалению менее летучих загрязнений. Механизм очищающего действия неясен. Возможно, что примеси растворяются в расплавленной присадке, а последняя при своем испарении их увлекает.
В процессе спекания кремнекелечная присадка (K₂O, SiO₂) и Al₂O₃ практически удаляются из штабика до такой степени, что методами спектрального и химического анализов нельзя отличить штабик вольфрама марки ВА от вольфрама марки ВЧ (бесприсадочный). В обеих марках в спеченных штабиках содержится 0,01% K₂O; 0,02% SiO₂ и 0,001% Al₂O₃ [12]. Однако в структуре рекристаллизованной вольфрамовой проволоки проявляется резкое отличие марок ВА и ВЧ (см. с. 217).

Присадка ThO₂, а также примесь CaO не улетучиваются в заметной степени в процессе спекания и нерастворимы в вольфраме. Располагаясь по границам частиц, эти соединения механически препятствуют росту последних, обеспечивая получение штабика с мелкозернистой структурой и задерживают рекристаллизацию при отжиге вольфрамовой проволоки. Это тормозящее влияние проявляется в большей степени, если присадка весьма дисперсна и равномерно распределена. Поэтому ThO₂ вводится обычно в виде азотнокислой соли или коллоидного гидрата окиси в вольфрамовую кислоту до ее восстановления.

Контроль качества спеченных штабиков

Качество штабиков контролируют по их внешнему виду, физическим свойствам, химическому составу и микроструктуре.

Штабики должны иметь однородную, слегка блестящую поверхность и не должны впитывать чернил, нанесенных черной на поверхность штабика (что характеризует требуемую пористость). Стрела прогиба штабика должна быть не более 4 мм на длину штабика 300 мм. Конусность (разница в толщине концов) не должна превышать 0,7 мм, а разница в длине сторон штабика (по его сечению) не должна превышать 0,4 мм. Допустимое содержание примесей в штабиках, %: 0,02 R₂O₃; 0,005 Ni; 0,015 CaO; 0,01 SiO₂; 0,04 Mo.

Плотность штабиков, определяемая методом гидростатического взвешивания, должна быть в пределах 17,5—18,5 г/см³.

Штабики должны иметь однородную структуру, которая контролируется изучением шлифа штабика под микроскопом. Зерни-
стоость штабиков зависит от марки вольфрама и находится в следующих пределах [11]:

<table>
<thead>
<tr>
<th>Марка</th>
<th>ВЧ</th>
<th>ВТ-7, ВТ-15</th>
<th>ВА, ВИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число зерен на 1 мм²</td>
<td>800—2 000</td>
<td>5 000—18 000</td>
<td>12 000—20 000</td>
</tr>
</tbody>
</table>

Особое значение в последнее время для контроля штабиков марки ВА приобрел метод определения относительного остаточного сопротивления, который позволяет оценить качество штабиков до проведения их термохимической обработки.

Метод был предложен в 1958 г. Краутцем и Шульцем [16]. При обычной температуре тепловые колебания атомов в решетке являются главным фактором, определяющим величину электросопротивления металла. Однако при низких температурах ($T < 20$ К) почти исключено рассеяние электронов, связанное с тепловыми колебаниями решетки, и электросопротивление определяется наличием примесей в металле, дефектов решетки, остаточных деформаций.

Таким образом, отношение сопротивления при низкой температуре (например, температуре жидкого гелия 4,2 К) к сопротивлению при комнатной температуре (или обратная ему величина) может служить методом контроля содержания примеси. Применительно к спеченным штабикам вольфрама марки ВА эта величина будет косвенно характеризовать остаточное содержание алюмокремнеземистой присадки, определяющей структуру рекристаллизованной вольфрамовой проволоки.

Обычно остаточное сопротивление определяют при температуре жидкого гелия. Однако для контроля спеченных штабиков (а также вольфрамовой проволоки) можно ограничиться температурой жидкого азота (78 К). Методика измерений описана в работах [17, 18]. Было найдено, что для спеченных штабиков (или изготовленных из них кованых и отожженных прутков), полученных из порошков вольфрама с содержанием фракции V в количестве 35—36% (классификация в восходящей струе воды, см. с. 148) и давлением прессования 4 тс/см², оптимальное значение относительного сопротивления $Z = \rho_{78K}/\rho_{298K} = 0,118$.

Помимо перечисленных выше методов контроля, качество вольфрамовых штабиков определяется способностью их к обработке давлением, для чего от партии отбирают технологическую пробу в 7—10 штабиков и опробуют их на всех стадиях механической обработки.

3. НОВЫЕ МЕТОДЫ ФОРМОВАНИЯ И СПЕКАНИЯ ЗАГОТОВОК И ИЗДЕЛИЙ

Гидростатическое и изостатическое прессование

Метод гидростатического прессования используется преимущественно для формования крупных заготовок однородной плотности, которые практически невозможно получить прессованием в стальных прессформах [21—25].
При гидростатическом прессовании порошок металла, помещенный в эластичную оболочку (из резины или другого полимерного материала), подвергается всестороннему сжатию с помощью жидкости, подаваемой под давлением в рабочую камеру. При гидростатическом прессовании нет трения порошка о стенки прессформы, что обеспечивает равномерную плотность спрессованной заготовки, отсутствие трещин и других дефектов, наблюдаемых при прессовании в стальных прессформах.

Методом гидростатического прессования формуют заготовки цилиндрической или прямоугольной формы (сугутки для проката), трубки и изделия более сложной формы. Нужную геометрическую форму получают, помещая эластичную оболочку в стальные обоймы.

На рис. 54 показана форма для гидростатического прессования цилиндрических заготовок. Эластичная оболочка растягивается и плотно прилегает к внутренней поверхности формы. На нижний конец формы натягивают резиновую крышку («берет») и стяжную резину, после чего форму заполняют порошком и устанавливают на вибрационной плате для равномерного распределения порошка в прессформе. Заполненную форму закрывают верхней резиновой крышкой и помещают в камеру гидростатического прессования.

На рис. 55 приведена установка для гидростатического прессования конструкции ЦНИИЧМ с пресскамерой диаметром 246 мм на рабочее давление до 2200 ат.

Корпус установки состоит из стального цилиндра, скрепленного путем горячей напрессовки двух рядов стальных колец. Прочность скрепленного трехслойного цилиндра выше, чем сплошного с теми же размерами. Такое конструктивное решение возможно, так как корпус разгружен от растягивающих напряжений (в осевом направлении), воспринимаемых через верхний и нижний затворы камеры плитами, гайками и стяжными шпильками. Наиболее важный узел рабочей камеры — затвор. Различные конструкции камер и затворов описаны в работе [22]. Герметичность камеры надежно обеспечивается затвором, имеющим упруго расширяющееся кольцо.
Рис. 55. Установка гидростатического прессования ЦНИИЧМ:
1 — стягивающая шпилька; 2 — гайка; 3 — натрубок с гнездом для присоединения вентиля; 4 — гайка затвора; 5 — упорный подшипник; 6 — упорная втулка; 7 — верхняя плита; 8 — корпус пресскамеры; 9 — верхний затвор с упрогорасширяющимся кольцом; 10 — нижний затвор; 11 — опора; 12 — трубопровод высокого давления; 13 — нижняя плита
В качестве рабочей жидкости применяют водные эмульсии различных масел или воду, в которую добавляют ингибиторы коррозии [23].

Методом гидростатического прессования вольфрамовых порошков получают заготовки с относительной плотностью 65—70% при удельных давлениях 2000—2500 кгс/см² [23]. Гидростатическим прессованием формируют заготовки вольфрама массой до нескольких сот килограммов (например, массивные втулки) [27].

В отличие от гидростатического прессования холодное изостатическое прессование в толстостенных эластичных оболочках может быть использовано для формования небольших фасонных изделий из вольфрамовых порошков (например, электродов электровакуумных приборов) [26]. При прессовании порошков со средней величиной зерен 4 мкм под давлением 15 тс/см² получали изделия относительной плотности 86%. После кратковременного нагрева изделий (~15 мин) во влажном водороде при 2650 К плотность повысилась до 92%, что достаточно для их использования в качестве электродов в вакуумных приборах.

В результате исследования закономерностей изостатического прессования вольфрамовых порошков авторы [26] вывели эмпирическую зависимость между относительной плотностью и давлением прессования, которая лучше описывает экспериментальные данные, чем другие известные выражения:

\[\ln \frac{D - D_0}{1 - D} = A \ln P + B, \]

где \(D \) — относительная плотность при давлении \(P \); \(D_0 \) — начальная относительная плотность (при \(p = 0 \)); \(A \) и \(B \) — постоянные.

Уравнение справедливо до давлений 20000 ат.

Изостатическое прессование порошков вольфрама в толстостенных эластичных оболочках, вставленных в стальную прессформу, изучали Г. А. Меерсон и С. С. Кипарисов с сотр. [29, 30]. Было отмечено, что при прессовании в толстостенных эластичных сухих оболочках наблюдается значительный градиент плотности по сечению (2—3%). Применение смазки стенок оболочки снижало неравномерность плотности. Для уменьшения взаимодействия прессуемого порошка с материалом оболочки авторы использовали в качестве смазки солидол—графит [30].

Плотность изделий из мелкозернистого вольфрамового порошка, полученных изостатическим прессованием, достигала ~73%, что на 5—10% выше плотности заготовок, спрессованных в стальной прессформе. Плотность брикетов может быть увеличена введением в вольфрамовый порошок строго дозированного количества равномерно распределенной смазки, например вазелинового масла [23]. В качестве материала оболочек используют каучук или резину на его основе с содержанием каучука не ниже.
95%. Такие оболочки обеспечивают равномерную передачу давления на прессуемый порошок и выдерживают без разрушения до 1000 прессований. Давление прессования в эластичных толстостенных оболочках не превышает 3 тс/см² и примерно на 20—25% ниже давления прессования, необходимого для достижения одинаковой плотности заготовок в стальных прессформах.

Спекание крупных заготовок

Крупные вольфрамовые заготовки спекают в индукционных печах в водородной среде, инертном газе или в вакууме. Схема индукционной печи мощностью 250 кВт для спекания массивных вольфрамовых втулок приведена на рис. 56 [27]. В графитовой камере печи устанавливают графитовый тигель с заготовкой. Для предотвращения загрязнения углеродом заготовку засыпают слоем вольфрамового порошка. Спекание ведется в защитной атмосфере гелия. по следующему режиму: нагревание заготовки до 2575°С при скорости подъема температуры 400°С/ч и выдержка при максимальной температуре от 4,5 до 6 ч в зависимости от размеров заготовки; длительная выдержка (~20 ч) при температуре 2450°С и последующее охлаждение с печью в атмосфере гелия. Спеченные заготовки, имеющие плотность около 90% от теоретической, пригодны для обработки давлением (экструзии, ковки и др.) [27]. Для спекания крупных заготовок тугоплавких металлов в атмосфере водорода институтом ЦНИИЧМ создана индукционная печь с герметичным индуктором (поверхность индуктора покрыта слоем пластика) [24, 28].

Активированное спекание вольфрамовых заготовок

С целью снижения температуры спекания, что особенно важно для крупных вольфрамовых заготовок, изучалось влияние малых присадок металлов VIII группы и присутствие паров воды в водороде на показатели спекания. Вашек впервые показал, что
добавки никеля активируют спекание вольфрамовых заготовок [31]. Г. В. Самсонов и В. И. Яковлев в результате сопоставления активирующего действия металлов железной и платиновой групп показали, что наиболее эффективна присадка никеля в количестве 0,2—0,5% (по массе) [32—34], причем способ введения присадки не играет существенной роли.

После спекания при температурах 1400—1600° С в суходом водороде плотность спеченных образцов находилась в пределах 18,1—18,4 г/см³ (94—95% от теоретической). При этом наблюдается значительный рост зерен, средняя величина которых равна 30—50 мкм [33]. Согласно представлениям, развитым в работе [33], до температуры плавления присадка никеля распределяется по поверхности зерен вольфрама за счет поверхностной диффузии атомов, а также диффузии атомов в приповерхностном слое и по границам зерен. Одновременно атомы вольфрама диффундируют в никель, что сопровождается образованием избыточных дефектов (вакансий, дислокаций) на стороне вольфрама. Дефекты в кристаллах, генерируемые присадкой никеля, облегчают пластическую деформацию и уплотнение материала при низких и умеренных температурах. При температуре плавления никеля его распределение происходит не только за счет диффузии, но также и вследствие растекания металла по поверхности частиц, что облегчает взаимное перемещение частиц под действием сил поверхностного напряжения. Вместе с тем вследствие значительной растворимости вольфрама в никеле определенную роль играет перекристаллизация частиц вольфрама через жидкую fazу (механизм растворения—осаждения). Японские исследователи установили, что введение вместе с никелем присадки фосфора (0,25% Ni + 0,02—0,03% P) ускоряет спекание в большей степени, чем присадка одного никеля. Авторы работы [35] наглядно продемонстрировали действие Ni—P присадки, изучая спекание сферических вольфрамовых порошков. Фосфур образует с никелем при 900° С жидкую фазу (эвтектику), хорошо смачивающую вольфрам и активирующющую диффузионные процессы. Вследствие этого спекание спрессованных заготовок вольфрама можно проводить при 1100—1200° С.

Мун [36] показал, что спекание заготовок вольфрама с присадкой 0,25% Ni дополнительно активируется, если процесс проводить в увлажненном водороде. Было установлено, что спекание в водороде, насыщенном парами воды при 30° С, увеличивает усадку примерно на 3—4% (при температуре спекания 1100—1200° С). Оба активирующих фактора (присадка никеля и увлажненный водород) действуют независимо, приводя к суммарному эффекту уплотнения. Роль паров воды при спекании можно объяснить с позиций «химической активации», обусловленной протекающими процессами окисления — восстановления (см. гл. V, с. 139). Эти процессы приводят к повышенной подвижности атомов, а также образованию тонкоспленных частиц с большой удельной поверхностью. Оба фактора способствуют ускорению спекания.
В методе горячего изостатического прессования совмещены процессы прессования и спекания. Порошок (или предварительно уплотненную заготовку) заключают в тонкостенный металлический контейнер, который герметично заваривают (обычно применяют электроннолучевую сварку) и испытывают на герметичность. Контейнер помещают в аппарат горячего изостатического прессования, где он подвергается при определенной температуре всестороннему сжатию с помощью инертного газа. Метод позволяет получать крупногабаритные изделия из вольфрамовых порошков как простых, так и сложных профилей с однородной плотностью. Особый интерес представляет горячее изостатическое прессование для получения заготовок из сферических вольфрамовых порошков, которые другими методами прессовать практически невозможно. Для прессования вольфрамовых порошков используют контейнеры с внутренним нагревом и холодными стенками аппарата высокого давления (рис. 57), что дает возможность вести процесс при рабочей температуре до 1600°С. Одно из важных требований к конструкции установок для горячего изостатического прессования — обеспечение безопасности работы. С этой целью стенки камер высокого давления выполняют из нескольких слоев. В аппаратах шведской фирмы ASEA предварительно напряженная камера обмотана высокопрочной проволокой, образующей наружный слой, обеспечивающий сопротивление высоким нагрузкам. Осевое усилие, действующее на крышки, не имеющие резьбы, воспринимается рамой, которая также обмотана проволокой [40, 41].
Фирма «Элдайд Кемикл» (США) использует для горячего изостатического прессования сферических вольфрамовых порошков установку с размерами цилиндрической шахты печи (с вольфрамовыми прутковыми нагревателями) диаметром 700 и высотой 2100 мм. В печь такого размера помещают молибденовый контейнер с порошком вольфрама массой до 2,5 т [43]. Другие конструкции рассмотрены в публикациях [27, 42, 43]. Вольфрамовые заготовки с теоретической плотностью прессуют при температурах 1550—1600 °С и давлении 700—1400 кгс/см² при времени выдержки от 1 до 5 ч [37].

По окончании процесса металлическую оболочку контейнера удаляют растворением или механически отделяют от заготовки. Сферические вольфрамовые порошки предварительно уплотняют в контейнере вибрацией. На рис. 58 показана структура заготовки из сферического вольфрамового порошка. Спеченные заготовки, а также изготовленный из них листовой вольфрам отличаются от обычного вольфрама высокой температурой рекристаллизации. Из таких заготовок изготовляют сопла ракет и другие изделия [38].

Горячее прессование в графитовых прессформах

В методе горячего прессования (как и в методе горячего газостатического прессования) совмещены процессы прессования и спекания заготовки. Прессование порошка осуществляют в прессформах из графита с высокими прочностными характеристиками (марка МГ). Необходимая температура прессования создается либо внешним обогревом прессформы (с помощью индуктора или нагревателя сопротивления), либо пропусканием электрического тока непосредственно через прессформу.

Преимущества метода горячего прессования состоят в относительно низком давлении прессования (во много раз ниже, чем при холодном прессовании в стальных прессформах) и высокой скорости достижения уплотнения заготовки до 90—95% от теоретической плотности. В условиях горячего прессования неизбежно происходит науглероживание поверхностного слоя заготовки вольфрама.

Для изготовления вольфрамовых заготовок большей частью применяют вакуумное горячее прессование. Это позволяет уменьшить карбидизацию вольфрама (за счет взаимодействия с окисью углерода), а также снизить содержание газовых примесей в заготовках. Все же и в этом случае науглероживание наружных слоев происходит вследствие твердофазного взаимодействия при температурах выше 1500 °С. Науглероженный слой содержит в основном W₂C и частично WC. В работе [44] установлено, что толщина карбидного слоя возрастает с увеличением температуры и времени изотермической выдержки. Степень карбидизации уменьшается, если давление прикладывается одновременно с началом нагрева прессформы.
Существенное снижение толщины карбидизированного слоя (на 15—20%) достигается при покрытии внутренней стенки прессформы тугоплавкими соединениями (ZrO₂, ZrC, NbC, ZrN) [44]. Поскольку карbidный слой той или иной толщины всегда образуется, предложены различные способы его удаления: обезуглероживание во влажном водороде при 1200—1300°С; осторожное размерное окисление со снятием окисного слоя; электрохимическое шлифование [12].

На рис. 59 приведена схема установки для вакуумного горячего прессования небольших заготовок (диаметр 30—50 мм) [45]. Графитовая прессформа (внешний диаметр 110, высота 200 мм) помещается в графитовом нагревателе вакуумной электропечи. Прессование осуществляется гидравлическим прессом.

Печь разогревается до максимальной температуры 2000°С примерно за 1 ч, разряжение в печи поддерживается около 10⁻³ мм рт. ст.

Недостаток вакуумного горячего прессования — сложность установок и малая их производительность. Вследствие этого наряду с вакуумными используют установки горячего прессования с защитной атмосферой аргона для предотвращения окисления графитовых нагревателей и прессформы [46, 47]. Условия горячего прессования порошков чистого вольфрама и с присадкой двукиси тория («торированный вольфрам») проанализированы в работах [46—49].

Метод горячего прессования может быть использован при прессовании заготовок диаметром до 400 мм для изготовления деталей ракет [47]. Горячепрессованные заготовки применяют для изготовления электродов в условиях импульсного дугового разряда малой и средней мощности [12].

4. ПЛАВКА ВОЛЬФРАМА

Для получения крупных заготовок (массой от 200 до 3000 кг), предназначенных для проката, вытяжки труб, а также произво-
ства изделий методом литья, освоена плавка вольфрама и сплавов на его основе в дуговых и электроннолучевых печах.

Теория дуговой и электроннолучевой плавок и конструктивные варианты плавильных установок рассмотрены в специальной литературе [50—52].

Дуговая плавка вольфрама ведется с расходуемым электродом в виде пакета спеченных штабиков или спеченных заготовок гидростатического прессования. Плавку можно вести на постоянном и переменном токе. Следует отметить, что в случае плавки вольфрама на переменном токе дуга вполне устойчива (в отличие от плавки менее тугоплавких металлов — титана, железа и др.). Это объясняется относительно большим временем деониЗации паров вольфрама (~5·10^{-3} с), которое несколько больше интервалов времени, в течение которого напряжение переменного тока меньше необходимого для поддержания дугового разряда в вакууме при температуре плавки [53].

В случае плавки на постоянном токе при отрицательной полярности расходуемого электрода большая часть энергии дуги выделяется на аноде, т. е. в ванне жидкого металла, тогда как при плавке на переменном токе энергия дуги равномерно распределяется между электродами. Из этого следует, что при плавке на переменном токе температура на оплавляемом конце катода выше и, следовательно, можно было ожидать, что скорость плавки будет больше, чем при дуге постоянного тока (при значениях тока, обеспечивающих одинаковый диаметр жидкой ванны). Опыт это не подтверждает. Вероятное объяснение меньшей скорости плавки в дуге переменного тока заключается в том, что в этом случае на электроде образуются маленькие капли металла (перегрев металла уменьшает величину поверхностного натяжения). Поэтому отрыв капли происходит при меньшей ее массе в сравнении с плавкой в дуге постоянного тока [58]. Отмечается несколько лучшее качество поверхности слитка при плавке на переменном токе [27].

Большей частью плавка ведется в вакууме ~10^{-2}—10^{-4} мм рт. ст. в рабочем пространстве печи. При этом в зоне дуги давление примерно на два порядка выше, чем в камере печи. Более высокая степень очистки от примесей достигается при плавке в разреженной атмосфере водорода (0,002—0,004 мм рт. ст.). Лучшее рафинирование металла в этом случае обусловлено снижением скорости плавки (часть энергии затрачивается на эндотермическую реакцию образования атомарного водорода), а также активностью атомарного водорода, восстанавливающего окислы.

Из приведенных ниже данных видно, что скорость плавки существенно влияет на степень очистки вольфрама от примесей [27]:

Скорость плавки, г/мин 0,15 0,45 2,2
Содержание в слитке, %:

кислорода <0,0001 0,002 0,002
азота 0,0001 0,003 0,0018
водорода <0,0001 0,0001 —
Ориентировочно скорость дуговой плавки вольфрама можно рассчитать по формуле [27]:

\[R = \frac{8 (P - 100)}{\rho \left(0,8D_z^2 - 0,2D_c^2\right)} \]

где

- \(R \) — скорость плавки, г/мин;
- \(P \) — мощность дуги, кВт;
- \(\rho \) — плотность электрода, г/см³;
- \(D_z \) и \(D_c \) — диаметры электрода и слитка соответственно, см.

Вывод формулы основан на предположении, что общее количество тепла, отводимое лучеиспусканием и конвекцией, является функцией площади поперечного сечения слитка и электрода. Из формулы следует, что производительность в большей мере зависит от диаметра электрода, а не слитка.

В процессе дуговой плавки необходимо обеспечить условия стабильного горения дуги и исключить образование побочных дуг между электродом и стенкой кристаллизатора. Одно из таких условий — работа на короткой дуге (в пределах 20—35 мм). Длина дуги не должна превышать величину зазора между катодом и стенкой кристаллизатора во избежание переброса дуги на стенку. Из этого следует, что должно быть определенное соответствование между диаметром электрода и кристаллизатора, составляющее ≈0,3—0,4. Ниже приведены режимы дуговой плавки вольфрама в зависимости от диаметра кристаллизатора [54].

Диаметр кристаллизатора, мм	95—115	140—160	250—300
Напряжение, В	38—42	30—50	60—70
Сила тока, А	4 500—6 000	12 000—13 000	13 000—17 000
Скорость плавки, кг/с	0,033—0,042	0,033—0,05	0,05

Слитки вольфрама дуговой плавки имеют крупнокристаллическую структуру и отличаются повышенной хрупкостью вследствие того, что при малой удельной поверхности межкристаллитных границ выделяющиеся по границам зерен примеси (окислы, карбиды, нитриды) образуют относительно толстые пленки.

Для снижения содержания примесей целесообразно первоначально плавить вольфрам в электроннолучевой печи [57]. Низкое остаточное давление в печах этого типа (10⁻⁵—10⁻⁸ мм рт. ст.), повышенная температура жидкой ванны и возможность регулирования длительности пребывания металла в жидком состоянии обеспечивают более глубокую очистку от примесей по сравнению с плавкой в дуговой печи [55].

<table>
<thead>
<tr>
<th>Примесь</th>
<th>О</th>
<th>С</th>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание примеси в металле, %:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходном</td>
<td>0,054</td>
<td>0,026</td>
<td>0,006</td>
<td>0,001</td>
</tr>
<tr>
<td>после дуговой плавки в вакууме</td>
<td>0,001</td>
<td>0,002</td>
<td>0,0003</td>
<td>0,0001</td>
</tr>
<tr>
<td>после электроннолучевой плавки</td>
<td>0,0005</td>
<td>0,0005</td>
<td>0,0001</td>
<td>0,0001</td>
</tr>
</tbody>
</table>
Однако слитки после электроннолучевой рафинирующей плавки имеют весьма крупнокристаллическую структуру. Пластическая деформация слитков затруднительна. Вследствие этого после электроннолучевой плавки большей частью слитки переплавляют в дуговой печи. Для измельчения зерна при дуговой плавке добавляют в качестве модификаторов (и одновременно раскислителей) небольшие количества карбидов циркония или ниобия. Легирующие добавки при выплавке сплавов на основе вольфрама вводят также при дуговой плавке, так как в условиях электроннолучевой плавки значительная доля вводимой присадки может испариться.

Для вольфрама перспективна развиваемая в последние годы плавка в плазменных печах в аргонной или аргоно-воздушной плазменной струе [56]. Так как плазменную плавку проводят при давлении газов около 1 ат, устраняются потери от испарения легирующих элементов при выплавке сплавов на основе тугоплавких металлов.

Для получения мелкозернистых слитков вольфрама и сплавов на его основе, а также изготовления деталей методом литья применяется дуговая гарнисажная плавка с разливкой металла в изложницу [57, 59, 60]. Первоначально в медном кристаллизаторе, вокруг которого расположен соленоид, выплавляют слиток вольфрама обычной плавкой с расходуемым электродом. Затем вместо расходуемого устанавливают нерасходуемый вольфрамовый электрод, с помощью которого в дуге-постоянного тока расплавляется часть металла таким образом, что у стенок кристаллизатора остается слой твердого металла (гарнисаж). Ванну жидкого металла выдерживают некоторое время для протекания процессов раскисления и дегазации. Затем проводят проплавление и донную разливку. С этой целью повышают ток соленоида, фокусируя дугу, одновременно повышая ток дуги до максимума. В результате этого глубина жидкой ванны увеличивается и достигает сливного отверстия, предварительно высверленного в донной части слитка. Металл сливается в толстостенную охлаждаемую медную изложницу. После слива в заготовке образуется полость в виде полусферы, которая снова заполняется с помощью расходуемого электрода для повторения процесса.

При сливе в медную изложницу создаются благоприятные условия для объемной кристаллизации, что приводит к получению равноосной мелкозернистой структуры слитка. Разработаны также методы гарнисажной плавки с поворотным тиглем со слитком металла в стационарную или вращающуюся изложницу (центробежные отливы). Методом гарнисажной плавки получают крупные отливки вольфрама и сплавов на его основе (сопла ракет массой до 100 кг, кольца диаметром 250 мм, трубы диаметром 200 и длиной 300 мм) [57]. Возможна отливка в графитовые формы. Однако в этом случае в зависимости от сорта графита углерод проникает в металл на глубину от 0,075 до 3 мм. Возможно соче-
тание электроннолучевой плавки с последующей гартиссажной плавкой для получения слитков мелкозернистой структуры.

5. ПОЛУЧЕНИЕ МОНОКРИСТАЛОВ ВОЛЬФРАМА

Монокристаллы вольфрама высокой чистоты отличаются от поликристаллического металла технической чистотой особенно физическими свойствами. Так, они пластичны вплоть до температура — 190° C, тогда как температура перехода обычного вольфрама из хрупкого состояния в пластичное не ниже 150—200° C. Полуфабрикаты из монокристаллов вольфрама (проволока, лента и др.) начинают использовать для изготовления деталей электронных приборов. Отсутствие газовыделения, формоустойчивость, стабильность физических и механических свойств деталей обеспечивают значительное увеличение срока службы приборов.

Монокристаллы вольфрама (как и молибдена) отличаются высокой устойчивостью в парах цезия и других щелочных металлов. Это позволяет использовать их для изготовления катодов термоэлектронных преобразователей тепловой энергии в электрическую и деталей газоразрядных приборов. Намечаются и другие области использования монокристаллов [61]. В настоящее время в СССР и других странах (США, Англия, Япония) организован промышленный выпуск монокристаллов вольфрама и других тугоплавких металлов. Методы получения монокристаллов тугоплавких металлов детально рассмотрены в монографии Е. М. Савицкого и Г. С. Бурханова [61].

Среди известных методов наиболее распространен получение метод бестигельной зонной плавки. Другой перспективный метод, позволяющий получать крупные монокристаллы, — выращивание из расплава с использованием плазменного нагрева — разработан Институтом металлургии АН СССР [61]. Кроме упомянутых выше, разработаны методы выращивания монокристаллов из газовой фазы и рекристаллизационные методы.

Метод зонной плавки

Метод зонной плавки или зонной перекристаллизации широко используется в промышленной практике для глубокой очистки и выращивания монокристаллов различных материалов. Теория и практика метода изложены в монографиях [62, 63]. Метод состоит в перемещении с определенной скоростью расплавленной зоны вдоль сравнительно длинного слитка (или спрессованного из порошка прутка). При этом происходит перекристаллизация металла, сопровождающаяся очисткой выделяющейся из расплава твердой фазы вследствие различия растворимости примеси в твердой и жидкой фазах и малой скорости диффузии в твердой фазе. Кроме того, при проведении процесса в вакууме из жидкой зоны удаляются примеси, обладающие высоким давлением пара.
Степень возможной очистки от примеси зависит от величины коэффициента распределения \(K = C_{тв}/C_{жк} \), представляющего собой отношение концентраций примеси в твердой и жидкой фазах.

Распределение примеси по длине слитка в результате зонной плавки (за один проход) приближенно описывается уравнением:

\[
C_x = C_0 [1 - (1 - K) e^{-Kx/L}],
\]

где \(C_x \) — концентрация примеси на расстоянии \(x \) от начала слитка;

\(C_0 \) — начальная концентрация примеси;

\(K \) — коэффициент распределения;

\(L \) — ширина жидкой зоны.

Уравнение выведено при допущении, что \(K \) — величина постоянная, диффузия в твердой фазе отсутствует, а в жидкой фазе протекает столь быстро, что концентрация примесей одинакова во всем объеме расплава [62]. При малых значениях \(K \) (\(K < 0.1 \)) высокая степень очистки происходит даже при однократном прохождении зоны. Более глубокая очистка достигается проведением нескольких последовательных проходов жидкой зоны. Зонная плавка менее эффективна для очистки от примесей, повышающих точку плавления металла (\(K > 1 \)).

Зонная плавка вольфрама и других тугоплавких металлов осуществляется по методу «плавающей зоны» с вертикальным расположением слитка (бестигельная зонная плавка), как показано на рис. 60 [67]. Расплавленная зона удерживается между двумя частями слитка силами поверхностного натяжения. Максимальная длина зоны, которая может удерживаться силами поверхностного натяжения, находится в зависимости от радиуса заготовки, а также от критического параметра, определяемого величиной \(\sqrt{\sigma/\rho} \), где \(\sigma \) — поверхностное натяжение, \(\rho \) — плотность материала [61]. Отношение \(\sigma/\rho \) при бестигельной зонной плавке должно быть не ниже 100 : 1 [65]. Максимальный диаметр получаемых вольфрамовых монокристаллических слитков 15—20 мм при длине 300—500 мм. Длина зоны обычно не превышает диаметра прутка.
Успешная очистка происходит при оптимальной скорости перемещения жидкой зоны, которая для вольфрама находится в пределах 0,5—3 мм/мин [61]. С целью обеспечения отвода в расплав примесей, концентрирующихся у фронта кристаллизации, осуществляют перемешивание жидкости путем вращения заготовки.

Для создания расплавленной зоны большей частью используют кольцевые катоды из вольфрамовой проволоки, перемещаемые вдоль заготовки. Для максимального использования эмиссии электронов необходимо располагать катод возможно ближе к слитку. При этом на катоде и фокусирующем электроде (экране) могут конденсироваться пары и брызги металла. Это приводит к быстрому выходу катода из строя, особенно в случае, если на зонную плавку поступает металл со значительным содержанием газовых примесей.

Для замены катода без перерыва плавки служат катодные шлюзы, позволяющие заменить катод примерно за 15 мин, или револьверное катодное устройство, с помощью которого катод заменяют за 1 мин [66]. Разработаны установки, в которых расплавленная зона создается трремя или более электронными пушками, расположенными симметрично в горизонтальной плоскости. В этом случае пушки закреплены стационарно. Перемещается заготовка по вертикали и вокруг своей оси. Такая система устраняет загрязнение металла материалом катода и исключает конденсацию паров металла на катоде [67].

Приблиźительную оценку потребляемой мощности на создание расплавленной зоны при плавке прутка диаметром d можно сделать, используя уравнение [68]:

\[
P = A d + B d^2,
\]
где \(A \) — константа, пропорциональная четвертой степени температуры плавления;

\(B \) — константа, пропорциональная теплопроводности вблизи точки плавления металла.

Ниже приведен примерный электрический режим зонной плавки вольфрама при начальном вакууме \(5 \times 10^{-5} \) мт. ст. [61]:

Диаметр заготовки, мм	8—10
Диаметр катода, мм	20—22
Число проходов	2—3
Напряжение накала катода, В	4,5—8
Разгоняющее напряжение, В	7 000—10 000
Сила тока накала катода, A	60—90
Сила тока на аноде, A	0,8—1,5
Скорость перемещения зоны, мм/мин	0,5—3,0

Монокристаллы вольфрама обычно получают из спеченных штабиков чистого вольфрама. Для снижения содержания примесей в исходной заготовке рекомендуется спекание штабиков проводить в вакууме. В процессе плавки происходит значитель-
ное испарение вольframовой заготовки (20—30% в зависимости от скорости перемещения зоны). С увеличением скорости движения зоны потери при испарении уменьшаются. Поэтому стремятся работать при максимально возможной скорости движения зоны [69]. По изменению отношения электросопротивлений $\rho_{268K}/\rho_{4.2K}$ по длине образца можно косвенно судить о содержании примесей в твердом растворе. Анализ данных привел к заключению, что очистка вольфрама при зонной плавке происходит как за счет испарения примесей, так и за счет зонной их сегрегации. Величина отношения сопротивлений для монокристаллов вольфрама колеблется от 10^4 до 10^5 [70, 73]. По данным спектрального анализа содержание металлических примесей в монокристаллах вольфрама находится в пределах $10^{-4}—10^{-5}\%$ [70]. Содержание кислорода по данным активационного анализа на быстрых нейтронах составляет $(4-5) \times 10^{-4}\%$ (по массе) [71]. Содержание углерода обычно порядка 0,002—0,004% в случае применения для создания разрежения парамасляного насоса, являющегося источником попадания в камеру печи паров масел и продуктов их крекинга. В некоторой степени это происходит даже при наличии азотной ловушки.

В связи с этим разработаны установки электроннолучевой зонной плавки с системой откачки, включающей цеолитовый сорбционный и гетероционный насосы [72]. Это позволяет снизить содержание углерода до $\sim 10^{-4}\%$. Если исходный материал достаточно чистый, то в результате прохождения жидкой зоны вдоль заготовки (2—3 прохода) получается монокристаллический пруток. Рентгенографические исследования показали, что в монокристаллических слитках вольфрама (как и других металлов с объемно-центрированной решеткой) рост кристалла при электроннолучевой зонной плавке самопроизвольно происходит преимущественно в направлении, близком к направлению $[100]$. В случае необходимости получить слиток с заданной ориентацией используют затравку.

Данные о механических свойствах монокристаллов вольфрама представлены в гл. VII.

Выращивание крупных монокристаллов по методу Вернейля

Метод Вернейля, описанный еще в 1902 г., заключается в наложении на поверхность перемещающейся вниз монокристаллической затравки порошка соответствующего вещества, приобретающего кристаллографическую ориентировку подложки.

До последнего времени этот метод использовали для получения монокристаллов тугоплавких окислов и других тугоплавких соединений. Е. М. Савицкий с сотр. [61, с. 54] *впервые*

использовал этот метод для получения крупных монокристаллов вольфрама, применив для наплавления металла плазменный нагрев. Принципиальная схема установки показана на рис. 61. Исходная монокристаллическая затравка закрепляется на медном водоохлаждаемом штVOKE, который может перемещаться вниз с регулируемой скоростью. На верхнем фланце камеры размещается плазмотрон. Анодом служит затравка, отрицательный полюс — вольфрамовый электрод плазмотрона. Через плазмотрон подается аргон или смесь аргона с водородом для создания плазменной струи и одновременно защитной атмосферы образца вольф-

![Diagram](image)

рама. Для получения плазмы газовая струя ионизируется дуговым разрядом. Температура плазменной струи достигает 10 000—15 000° C. Вольфрамовый пруток подается в плазменную струю, его конец расплывается, капли металла попадают на поверхность жидкого металла, находящегося на подложке. Затравка опускается с определенной скоростью, поддерживая на постоянном уровне фронт кристаллизации. Таким образом, процесс в определенной мере подобен методу вытягивания монокристалла из расплава с непрерывной подпиткой. Одновременно происходит очистка прутка от примесей в результате их перераспределения (по закону нормальной направленной кристаллизации), испарения легколетучих примесей. При введении в газовую струю небольших количеств кислорода достигается рафинировка от углерoda. Метод позволяет выращивать монокристаллы диаметром, намного превосходящим диаметр исходной затравки.

Удержание расплавленного металла от растекания обеспечивается конструкцией плазмотрона, плазменная струя которого имеет температуру, уменьшающуюся от центра к периферии. Вследствие этого на периферии температура равна температуре кристаллизации металла, тогда как в центре температура максимальная.

Этим методом были получены монокристаллы вольфрама диаметром 45 мм и длиной 300 мм. Содержание азота и кислорода в полученных монокристаллах находится на уровне зоннорефенированных, содержание углерода не превышает 0,003—0,005%.

205
Относительное сопротивление равно 2500—3000. Однако такие монокристаллы имеют менее совершенную структуру.

По мнению авторов [61], целесообразен дуплекс-процесс, заключающийся в получении крупных монокристаллов описанным методом с последующим их переплавом и выращиванием с помощью зонной плавки для создания более совершенной структуры.

Метод собирательной рекристаллизации

В 1913 г. Пинч 1 разработал способ получения монокристаллической вольфрамовой проволоки, основанный на росте монокристалла за счет мелких кристаллитов при определенном градиенте температур. Способ состоит в следующем: тонкий вольфрамовый порошок со средним размером частиц 0,5 мкм, содержащий 2% ThO₂, смешивают с органической связкой, например с раствором сахара. Полученную массу пластинчатуют на каландрах и продавливают через алмазную фильтр через тонкую нить. Затем полученную нить продвигают с определенной скоростью через узкую зону с высокой температурой.

Схема осуществления процесса показана на рис. 62 [74]. Проволока перематывается с одной катушки на другую, проходя через камеру, заполненную водородом. На пути движения проволоки расположена раскаленная вольфрамовая спираль длиной всего лишь в несколько миллиметров, внутренний диаметр которой немного больше, чем диаметр проволоки. Таким образом, в определенном месте создается «точечный» нагрев проволоки до 2000—2200°С, после которого следует понижение температуры, что обусловливает усиленный рост кристаллов. В зоне высокой температуры первоначально возникает крупный кристалл, занимающий все сечение проволоки; он продолжает расти за счет мелких кристаллов, вступающих в зону роста по мере движения проволоки. При этом следует учесть, что температура, при которой еще не растут мелкие зерна, достаточна для роста крупного кристалла. Скорость движения проволоки должна быть согласована со скоростью роста кристалла.

Скорость передвижения 3 м/ч для проволоки малого диаметра (0,05—0,1 мм). При проволоке большого диаметра (около 1 мм)

1 Пат. (Германия), № 291994, 1913; пат. (Англия), № 16620, 1914.
обычно получаются два или три кристалла, растущих одновре-менно с почти одинаковой ориентацией. При соблюдении необходи-димых условий температуры и скорости передвижения возможно получение монокристаллической проволоки длиной в несколько метров.

Вариант этого процесса состоит в замене вольфрамовой нити, полученной из пластинчатой массы, тонкой вольфрамовой про-волокой 1. Правда, в тянутой проволоке, обладающей волокни-стой структурой, тенденция к росту и рекристаллизации так ве-лика, что трудно предотвратить образование большого числа новых центров. Однако, применяя предварительную обработку нити, удается получить монокристаллическую нить. Протягивают предварительному отжигу при 1600°С в течение 1 с. Отжиг приводит к превращению волокнистой структуры в очень тонкую равноосную структуру. Далее проволоку протягивают через фильтр при обжатии 5—7% и пропускают с определенной скоростью через зону высокой температуры.

Метод осаждения из газовой фазы

По методу Пинча можно получить вольфрамовую проволоку диаметром не более 1 мм. Протягивают большего диаметра и прутки диаметром 9—10 мм можно получить, осаждающая вольфрам из газовой фазы на поверхность нагретой монокристаллической про-волоки. При определенных условиях вольфрам осаждается, об-разуя монокристаллический слой, ориентированный так же, как исходная проволока. Возможны два варианта наращивания моно-крystalлической проволоки или прутков из газовой фазы.

1. Восстановление WCl₆ или WF₆ водородом на нагретой вольфрамовой нити. Этот метод в 1922 г. разработал Кореф [75, 76]. Оптимальные условия осаждения следующие: водород пропус-кают через испаритель WCl₆, находящийся при температуре 120°С, со скоростью 35 л/ч, затем смесь H₂ + WCl₆ направляют в аппара-рат, где в контактах закреплена вольфрамовая монокристал-лическая нить, нагретая до 1000°С. В системе поддерживается общее давление 12 мм рт. ст. При более высоком парциальном давлении WCl₆ и увеличении скорости осаждения вольфрама получается поликристаллическое покрытие.

Осажденный слой, хотя и не отличается по структуре от исход-ной проволоки, но приобретает пластичность только после отжига при 2500°С в течение нескольких минут. Хорошей пластичностью обладают слои, осаженные при малых парциальных давлениях хлорида [79].

2. Термическая диссоциация WCl₆ по методу, разработанному ван Аркелоем [77]. Достаточная скорость диссоциации (скорость роста диаметра проволоки 0,025 мм/мин) наблюдается при тем-

1 Пат. (Англия), № 174714, 1920; пат. (США), № 154699, 1920.
ГЛАВА VII

ОБРАБОТКА ДАВЛЕНИЕМ
И МЕХАНИЧЕСКИЕ СВОЙСТВА
ВОЛЬФРАМА

1. ОБРАБОТКА ДАВЛЕНИЕМ

Поликристаллические заготовки вольфрама обычной (технической) чистоты — спеченные штабики, слитки плавленого металла — хрупки при нормальной температуре. Вольфрам, как и другие металлы VI A подгруппы с решеткой о. ц. к., характеризуется переходом из пластичного состояния в хрупкое в узком интервале температур. Температура перехода зависит от содержания примесей, структуры (величина зерен, плотность и распределение дислокаций и др.), условий деформирования (схема напряженного состояния, скорость деформирования) и находится в интервале от 200 до 500° С (табл. 27). Между тем температура перехода высокочистых монокристаллов вольфрама лежит в пределах от — 196 до — 107° С.

Наибольшее влияние на пластические свойства вольфрама оказывают примеси внедрения (O, C, N), в особенности примеси углерода и кислорода. Растворимость элементов внедрения в вольфраме весьма низкая (C ~ 10^{-5}%, O ~ 10^{-4}%, N ~ 10^{-8}%). При содержании элементов внедрения, превышающем предел растворимости, в металле выделяются включения избыточных фаз — карбидов, окислов (гидриды и нитриды вольфрама неустойчивы и не играют существенной роли). В слитках плавленого вольфрама, характеризующихся крупнокристаллической структурой, карбидные и окисные фазы при относительно высоком содержании примесей располагаются преимущественно по границам зерен (часть в виде пленок), что вызывает хрупкое межзеренное разрушение.

Рекристаллизованный (после деформации) вольфрам имеет значительно более высокую температуру перехода, чем деформированный.
Влияние содержания примесей внедрения на температуру перехода вольфрама в хрупкое состояние [1]

<table>
<thead>
<tr>
<th>Способ получения вольфрама</th>
<th>Содержание, %</th>
<th>Температура, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Спеченный в вакууме штабик</td>
<td>0,04</td>
<td>0,023</td>
</tr>
<tr>
<td>Дуговая вакуумная плавка</td>
<td>0,03</td>
<td>0,004</td>
</tr>
<tr>
<td>Зонная плавка: один проход</td>
<td>0,024</td>
<td>0,001</td>
</tr>
<tr>
<td>Зонная плавка: два прохода</td>
<td>0,02</td>
<td>0,001</td>
</tr>
<tr>
<td>Зонная плавка (исходная заготовка была предварительно обезуглерожена)</td>
<td>0,001</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Одна из причин низкотемпературной хрупкости вольфрама — блокировка дислокаций примесями внедрения. Однако не все явления можно объяснить этим; в частности, этим нельзя объяснить различия в пластических свойствах монокристаллов и поликристаллов при одинаковом содержании примесей и отсутствии избыточных фаз по границам зерен. Следовательно, в этом случае на пластичность металла влияет сетка высокоугольных границ в поликристаллическом металле. Это влияние объясняется сегрегацией примесей внутри твердого раствора на высокоугольных границах. Миграция атомов примесей к границам вызвана тем, что в области границ решетка сильно искажена, и инородный атом может здесь найти себе место с меньшей затратой энергии, чем вдали от границ.

Повышенная концентрация примесей у границ зерен приводит к усилению барьерного действия, т. е. сопротивления движению дислокаций. Это может привести к трещинам, которые определяют хрупкое разрушение. Кроме того, скопление примесей на границах, уменьшая поверхностную энергию, облегчает развитие трещин вдоль границ, т. е. межзерренное разрушение [5].

Влияние сегрегации примесей у высокоугольных границ на повышение температуры перехода столь велико, что оно превосходит эффект повышения пластичности вследствие уменьшения плотности дислокаций при переходе от деформированного состояния к рекристаллизованному. Это объясняет более низкую температуру перехода у деформированного вольфрама (высокоугольные границы отсутствуют), чем у рекристаллизованного, а также меньшую пластичность поликристаллического металла, полученного из монокристалла.
Таким образом, снижению температуры перехода вольфрама из пластичного состояния в хрупкое должны способствовать следующие факторы: очистка от примесей внедрения, измельчение и деформирование зерна.

Заготовки вольфрама (спеченные или после плавки) подвергают горячей механической обработке давлением при темпера-

![Diagram](image)

Турах 1400—1650°С, при которых пластичность металла максимальная. При этом температуру конца обработки поддерживают ниже температуры начала рекристаллизации для обеспечения необходимой прочности изделий.

На рис. 63 приведена диаграмма рекристаллизации вольфрама дуговой вакуумной плавки, построенная Е. М. Савицким с сотр. [1]. Температура начала рекристаллизации показана пунктирной линией. Механическая обработка вольфрамовых заготовок детально рассмотрена в монографиях [3, 4, 8, 9].

Ковка и прессование вольфрамовых заготовок

Ротационная ковка штабиков. Спеченные вольфрамовые штабики квадратного сечения со стороной 10—15 мм, предназначенные для производства проволоки, первоначально куют на ротационных машинах для протяжки проволоки.

В ковочной машине ударов (до 10 000—12 000 в минуту) от двух ковочных штампов
«плашка». Ковочная машина (рис. 64) имеет неподвижную чугунную станину, внутри которой на обойме свободно расположены ролики. Внутри обоймы вращается шпиндель. В торцевой части головки шпинделя в радиально расположенных пазах помещены ползуны и штампы. При вращении шпинделя под воздействием центробежной силы ползуны, ударяясь о выступающие рамки, откидываются к центру, совершая возвратно-поступательное движение. Вместе с ползунами движутся штампы, производя удары по штамбу. Число ударов в минуту зависит от количества роликов и числа оборотов шпинделя. Штампы изготавливают из быстросохревающей стали. Используют также спеченные твердые сплавы, из которых изготавливают рабочую часть штампа (вставку), закрепляемую в оправку из обычной стали.

Нагрев штампов на первых этапах ковки ведут в водородной многоканальной печи сопротивления с молибденовыми нагревателями. Ниже приведены режимы ковки.

Первая ковка ведется на машинах наибольшей мощности при числе оборотов около 300 в минуту (3000 ударов в минуту) до диаметра ~7 мм. Температура нагрева штамба 1450–1500°С, температура ковки не должна быть ниже 1300°С.

После первой ковки пруток подвергают промежуточному отжигу в течение 3 мин в сварочном аппарате при температуре выше температуры рекристаллизации (2200°С). На всех последующих ступенях ковки, а затем волочения температура нагрева ниже темп-

1 На первой стадии ковки штамбы тонированного вольфрама нагревают в печи с графитовой трубой, что предотвращает образование глубоких поперечных трещин [6, 11].
пературы рекристаллизации. Если после первой ковки не проводится рекристаллизующего отжига прутков, изделия из них (проволока) приобретают склонность к расслою при изгибе.

При первой ковке прутки подают в ковочную машину вручную. Дальнейшая ковка с диаметра 7 до 4,5 мм и с диаметра 4,5 до 2,25 мм осуществляется механической подачей прутка, проходящего сначала через газовую печь (рис. 65). Вторую ковку ведут на машинах средней мощности, а третью — на машинах малой мощности. У последних число оборотов шпинделя 1300 в минуту (число ударов ~15 000 в минуту) [4]. Для предотвращения окисления и уменьшения износа штампов прутки до поступления в печь покрывают смазкой — аквадагом (смесь коллоидного графита с аммиачной водой и добавкой сахара).

Температура нагрева под ковку по мере уменьшения диаметра прутка снижается с 1500—1400°С (вторая ковка) до 1300—1250°С (третья ковка) и зависит от марки вольфрама (прутики марок ВТ, ВЛ и ВИ куют при более высокой температуре, чем прутки марок ВА и ВЧ) [4, 8].

Обработка плавленого вольфрама. Слитки вольфрама дуговой или электроннолучевой плавки имеют грубую, крупнокристаллическую структуру. Горячая ковка таких слитков невозможна из-за образования трещин и разрушения. В связи с этим для разрушения первоначальной грубозернистой структуры слитки вольфрама прессуют. Различные схемы и режимы прессования рассмотрены в монографиях [3, 4]. На рис. 66, а показана принципиальная схема прессования прутка с прямым истечением. Прессуемый слиток сжимается с помощью пулансона прессшайбой и выдавливается через матрицу в виде прутка. Для получения одно-
родной мелкозернистой структуры слитки вольфрама подвергают двойному горячему прессованию, достигая необходимой степени деформации (около 90%). Первое прессование проводят, нагревая слиток до 1800—1900° С при больших скоростях, чтобы сохранить достаточно высокую температуру заготовки. Перед прессованием контейнеры подогревают до 350—400° С. После разупрочняющего отжига примерно при 1000° С проводят второе прессование при температурах 1350—1500° С. Температура нагрева при прессовании зависит от чистоты исходных слитков. При прессовании используют графитово-масляную смазку со стеклотканью [3, 15].

Заготовки после прессования подвергают деформации ковкой на ротационных ковочных машинах с частыми подогревами и обжатиями 5—15%, как описано выше.

Прессование жидкостью высокого давления (гидроэкструзия). Известно, что прочность и пластичность металлов можно существенно улучшить, если их пластическую деформацию осуществлять под давлением [16, 17]. Это использовано в новом методе прессования металлов — гидроэкструзии, — схема которого показана на рис. 66, б [3, 4]. Отличие гидроэкструзии от обычного метода прессования состоит в следующем. Заготовка находится в условиях всестороннего сжатия жидкостью высокого давления; отсутствует трение между заготовкой и стенками контейнера, что позволяет прессовать заготовки большой длины, чем при обычном прессовании; между деформируемым материалом и матрицей имеется пленка рабочей жидкости, которая одновременно служит смазкой. При гидроэкструзии можно вести деформирование с большими обжатиями, так как необходимые усилия прессования меньше, получаемые заготовки имеют небольшие различия в свойствах по длине и сечению.

Повышение пластичности металлов при деформации в условиях повышенного давления позволяет использовать гидроэкструзию для деформирования на холоду или незначительном нагреве молибдена и вольфрама [18, 19].

В работе [19] изучалась гидроэкструзия прутков вольфрама марки VA, полученных предварительной ковкой штабиков до степени деформации 60—65%. При температуре прутка 200—250° С и давлении 10—12 тыс. ат получали экструдированные прутки с более высокими прочностными характеристиками, чем ротационно-кованые. Полученная из них проволока (по обычным режимам волочения) диаметром 0,2 мм имела прочность (после отжига при 1900—2100° С), в полтора-два раза превышающую прочность прутков ротационной ковки.

Поскольку ротационная ковка — весьма трудоемкая операция, применение метода гидроэкструзии для получения прутков из вольфрама весьма перспективно. Авторы работы [19] считают, что возможно применение прессования гидроэкструзией непосредственно штабиков или спеченных заготовок, полученных гидростатическим прессованием. Однако в этом случае необходимо повы-
сить температуру прессования до 400—450°С и использовать давления порядка 14—17 тыс. ат.

Плоская ковка и прокатка узких лент или фольги. Для производства пластин штабики подвергают плоской ковке пневматическим молотом. Плоскую ковку ведут вначале при температуре 1500—1700°С, по мере деформации температуру снижают до 1200—1300°С. Нагрев ведут в водородной атмосферах. Толщина поковок, пригодных для последующей прокатки, 8—10 мм (из штабиков сечением 25×25 мм) и 4—5 мм (из штабиков сечением 12×12 мм). Прокатку поковок ведут на двухвалковых или еще более мощных станах. Поковки перед прокаткой очищают от окислов погружением в расплав смеси щелочи с селитрой. До определенной толщины прокатку ведут при нагревании заготовок вначале до 1300—1400°С с понижением до 1000—1200°С. валки большей частью не нагревают или иногда нагревают до 250—350°С. После горячей прокатки до толщины ~0,6 мм ленту очищают и подвергают холодной прокатке (если необходимо с промежуточным отжигом при 900—950°С). Прокатку ведут в одном направлении. На последних стадиях прокатки (до тонких листов толщиной 0,125 мм) применяют прокатку в пакетах. Несколько вольфрамовых лент помещают между более толстыми молибденовыми пластинами. Последние более пластичны и быстрее деформируются, чем вольфрамовые пластины. Прокаткой в пакетах получают вольфрамовую ленту толщиной 0,02—0,03 мм [8].

В последнее время листовой вольфрам более крупных размеров получают методом прокатки предварительно прессованных слитков электронно-лучевой плавки. Из слитков диаметром 70—80 мм прессуют прямоугольные заготовки шириной 50—60, толщиной 20—25 мм. Отожженные при 1800°С в вакууме заготовки деформируют на двухвалковых прессах при нагревании по режимам, рассмотренным выше. Прокатка вольфрама из предварительно деформированных слитков детально рассмотрена в работах [3, 4].

Волочение проволоки [4,6—11]

На волочение проволоки поступают кованые прутки диаметром 2,75 мм. По мере деформации температура волочения снижается с 1000 до 400—600°С в конце процесса. Для проволоки диаметром до 0,3 мм используют фильры из твердых сплавов на основе карбида вольфрама, для проволоки меньших диаметров (до 0,01 мм) — алмазные фильры 1. При волочении нагревают не только проволоку, но и фильеру. Нагрев осуществляют пламенем газовой горелки или электрическим нагревательным элементом. В качестве смазки используют аквадаг.

1 В последние время изготовление алмазных фильм существенно упрощалось благодаря использованию лазерного луча для создания каналов в алмазе.
Волочение проволоки до диаметра 1,26 мм ведут на прямолинейном цепном волочильном стане (после протягивания через фильтеру проволока движется прямолинейно). Для дальнейшего волочения используют барабанные машины. Обычно волочение в пределах диаметров 1,25—0,5 мм ведут на блочном стане с диаметром катушки ~1000 мм.

Протяжку проволоки от 0,5 до 0,25 мм (среднее волочение) проводят на машинах однократного волочения. Для тонкого и тончайшего волочения, кроме того, получают распространение машины многократного волочения, в которых проволоку подвергают непрерывному деформированию в последовательно расположенных фильтерах с уменьшающимся диаметром. Концы проволок для облегчения их ввода в фильтеру подвергают травлению в расплаве селитры (при грубом волочении) или анодному растворению в растворе щелочи (при тонком волочении).

В процессе волочения проводят промежуточный отжиг проволоки с перемоткой. После грубого волочения для проволоки диаметром 0,5 мм проводят окислительный отжиг при 800°С для придания поверхности проволоки шероховатости, обеспечивающей способность хорошо удерживать смазку. Остальные отжиги для проволоки диаметром 0,30; 0,12 и 0,05 мм проводят в атмосфере проточного водорода в электропечи при 1600—1750°С с одновременным волочением проволоки через фильтеру. Отжиги частично снимают внутренние напряжения (нагартовку) и повышают пластичность проволоки. Скорость протяжки вольфрамовой проволоки в первых проходах составляет 2—6 м/мин и возрастает до 80—100 м/мин с уменьшением диаметра до 0,02 мм.

В результате ковки, а затем волочения без рекристаллизующего отжига исходная равносиняя хрупкая структура заготовок постепенно превращается в волокнистую, состоящую из осколков кристаллов, вытянутых вдоль оси обработки (рис. 67). Это приводит к резкому повышению прочности (тонкая вольфрамовая проволока имеет прочность более 400 кгс/мм²). Суммарная деформация, которую выдерживает вольфрам при превращении в тонкую проволоку, достигает 100 000—200 000. Столь громадную деформируемость (без рекристаллизующего отжига) не допускает ни один металл.

Полученная в результате волочения вольфрамовая проволока покрыта графитовой смазкой (такую проволоку называют «черной»). Для очистки поверхности проволоки используют отжиг в увлажненном водороде, химическое травление в расплаве селитры и электролитическое травление переменным током в щелочных растворах. Последний способ получил наибольшее распространение. Условия и режимы травления рассмотрены в работах [12, 13]. Иногда проволоку подвергают электролитической полировке в растворах едкой щелочи низкой концентрации [14]. В результате слаживания поверхностных дефектов существенно (иногда на 20—25%) повышается механическая прочность поли-
рованной проволоки. По данным работы [11], проволока диаметром 0,5 мм из вольфрама марки ВА после электролитической полировки в деформированном состоянии обладает при 110° С и нагрузке 40 кгс/мм² в 15—20 раз большей длительной прочностью, чем та же неполированная проволока.

Рис. 67. Структура спеченного штабика (а) и проволоки (б). × 100

2. НЕПРОВИСАЮЩАЯ ВОЛЬФРАМОВАЯ ПРОВОЛОКА

Тонкая вольфрамовая проволока используется преимущественно в качестве тела накала в электроосветительных лампах и электронных приборах. В том и другом случае проволока работает при температурах, значительно превышающих температуры рекристаллизации, что должно приводить к изменению структуры, механических и электрических свойств проволоки.

При нагревании проволоки из чистого вольфрама до температуры 2000° С во времени происходят структурные изменения, схематически показанные на рис. 68 [9]. Первоначально протекает быстрое превращение волокнистой структуры в мелкозернистую равноосную. Затем по мере нагревания происходит рост кристаллов (собирательная рекристаллизация), которые в тонких проволоках достигают размеров диаметра проволоки. При этом может произойти смещение одних кристаллов по отношению к другим (сдвиг по границам зерен) и переплав нити электрическим током вследствие изменения сечения в отдельных местах. Подобное поведение нитей из чистого вольфрама наблюдалось на первоначальном этапе развития производства электроламп, в которых телом накала служили прямые нити из чистого вольфрама.
В дальнейшем с целью повышения коэффициента светоотдачи в электрических лампах стали использовать одинарные и дважды спираллизованные нити, навитые из тонкой проволоки и используемые в качестве тела накала в газонаполненных лампах. В таких спиралах вследствие повышенных напряжений рекристаллизация происходит быстро, проволока теряет прочность, провисает под действием собственной массы и разрушается. Для повышения прочности и формоустойчивости нитей используют два пути: а) торможение процесса рекристаллизации путем введения присадок ThO₂ (торированный вольфрам) или других прочных неиспаряющихся окислов (La₂O₃, Y₂O₃ и др.); б) введение присадок, способствующих бурному росту зерна в процессе рекристаллизации с получением длинных монокристаллов, соединенных внахлестку с зубчатыми продольными границами (стапельная структура), деформации «соскальзывания» по которой невозможна.

Первый способ только частично решает проблему формоустойчивости вольфрамовых спиралей, так как присадки ThO₂ и других окислов лишь замедляют рост кристаллов. Роль добавок ThO₂, La₂O₃ или Y₂O₃, однако, состоит в повышении эмиссионных свойств проволоки, поэтому проволоку с присадками этих окислов используют в радиоэлектронике для изготовления катодов.

Второй путь широко используют во всех случаях, когда необходима формоустойчивая проволока (спирали ламп накаливания, керны подогревателей в радиолампах и др.). Эффективная присадка, обеспечивающая нужную структуру рекристаллизованной проволоки, — кремнеземистая (K₃SiO₅) в сочетании с хлоридом или нитратом алюминия (0,32% K₂O; 0,45% SiO₂; 0,03% Al₂O₃).

Как отмечалось выше, присадка должна вводиться в суспензию «активной» WO₃, полученной прокаливанием паравольфрамата при 500—550° С. Важно также строгое соблюдение дозировки присадки.

В штабиках после спекания (сварки) остается лишь небольшая доля присадки. Однако проволока, изготовленная из порошка с присадкой, резко отличается от проволоки, изготовленной из чистого вольфрама, температурой рекристаллизации (табл. 28), структурой после рекристаллизующего отжига и прочностными характеристиками.

Как видно из данных табл. 28, температура рекристаллизации проволоки с присадкой на 300—400°С выше температуры рекристаллизации бесприсадочного вольфрама [20].

Рис. 68. Схема структурных изменений в тонкой вольфрамовой проволоке в процессе рекристаллизации (по Смителлесу)
Таблица 28

<table>
<thead>
<tr>
<th>Стадия кристаллизации</th>
<th>(t_{кр}), °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>чистого вольфрама ВЧ</td>
<td></td>
</tr>
<tr>
<td>Начало субмикроскопической рекристаллизации обработки</td>
<td>1200</td>
</tr>
<tr>
<td>Появление зерен собирательной рекристаллизации</td>
<td>1680</td>
</tr>
<tr>
<td>Полное исчезновение следов волокнистой структуры</td>
<td>1755</td>
</tr>
<tr>
<td>Дальнейший рост зерен</td>
<td></td>
</tr>
<tr>
<td>При 2500 медленный рост</td>
<td></td>
</tr>
<tr>
<td>вольфрама с присадкой ВА</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>2115</td>
</tr>
<tr>
<td></td>
<td>2115</td>
</tr>
<tr>
<td></td>
<td>Нет роста</td>
</tr>
</tbody>
</table>

Особенность проволоки с присадкой по сравнению с обычными деформированными металлами заключается в возрастании температуры рекристаллизации с увеличением степени деформации. Как видно из рис. 69, температура рекристаллизации вольфрамовой проволоки при изменении диаметра проволоки от 6 мм до 500 мкм остается постоянной, а затем внезапно возрастает на 500°С при уменьшении диаметра проволоки от 500 до 160 мкм. Последнее сопровождается изменением текстуры в рекристаллизованной проволоке от ориентации (110) к ориентации (531) [25].

Первичную рекристаллизацию проволоки вольфрама марки ВА (или спиралей из этой проволоки) проводят, отжигая проволоку в водороде примерно при 1550—1600°С. Полная рекристаллизация с образованием крупнокристаллической структуры происходит непосредственно в лампе при температурах 2400—2600°С с выдержкой при этих температурах от нескольких секунд до 1—3 мин (в зависимости от диаметра проволоки).

На рис. 70 сопоставлена структура проволок вольфрама марок ВЧ и ВА после рекристаллизации при 2400°С. Сформировавшаяся в результате рекристаллизации структура с длинными кристаллами (иногда целые витки состоят из одного длинного кристалла) далее не изменяется. Качественная структура непровисающей проволоки
получается лишь при условии соблюдения найденных оптимальных режимов на всех стадиях технологии: получения WO₃, дозировки и введения присадки, получения порошка вольфрама, прессования штабиков, спекания и механической обработки [21].

Рис. 76. Структура вольфрамовой проволоки диаметром 100 мкм:
а — чистый вольфрам (ВЧ) после отжига при 2400° С; б — вольфрам с присадкой (ВА) после отжига при 2400° С («стальная структура»)

Как видно из рис. 71 [22] кристаллы максимальной длины получаются при некоторой оптимальной степени деформации, причем добавление соли алюминия к кремнеземоносной присадке приводит к значительному увеличению размеров кристаллов. Очевидно, что для изготовления проволоки из вольфрама марки ВА различных диаметров необходимо использовать штабики соответствующих размеров с тем, чтобы степень деформации была оптимальной. Несоблюдение этого условия повышает степень брака в производстве непровисающей проволоки [22].

Более 50 лет механизм влияния ничтожных количеств оставляющихся в спеченных штабиках компонентов присадки (K₂O, SiO₂ и Al₂O₃) на образование рекристаллизационной структуры непровисающей проволоки и ее прочностные характеристики оставался непонятным. Теория процесса создана лишь в последние годы. В результате изучения структуры изломов и шлифов штабиков и проволоки на различных стадиях обработки и отжига с помощью электронной и растровой микроскопии было установлено, что в вольфрамовых штабиках и проволоке содержатся поры (пузырьки), которые в процессе обработки давлением и образования волокнистой структуры удли-
няются, а затем образуют на границах зерен ряды мелких пузырьков [23—27].

В работе [27] методом оже-спектроскопии установлено присутствие калия на поверхностях изломов рекристаллизованных образцов; другие элементы присадки (кремний и алюминий) не обнаружены. Можно представить образование рядов пузырьков схемой, показанной на рис. 72 [26].

В процессе начального волочения пузырьки вытягиваются в капилляры протяженностью в один микрон и более. При дальнейшем волочении с промежуточными отжигами капилляры под влиянием сил поверхностного натяжения делятся на ряды пузырьков. Таким образом, обработка в сочетании с отжигом способствует образованию рядов пузырьков. Автор работы [25] отмечает, что длинные поры (капилляры) становятся неустойчивыми и распадаются при отжиге на ряд пузырьков при отношении длины капилляра к диаметру $l : d > 20$. При отношении $l : d < 10$ при отжиге происходит сфероидизация капилляра. Ряды пузырьков препятствуют движению границ зерен в поперечном направлении, что приводит к повышению температуры рекристаллизации на несколько сот градусов (по сравнению с чистым вольфрамом) и образованию в процессе рекристаллизации удлиненных взаимноблокирующих кристаллов.

Бергхезан и Фордекс [26] более детально рассмотрели факторы, влияющие на образование стеллярной структуры. Существенное значение имеют размеры пузырьков, величина интервала между ними и расстояния между параллельными рядами. Все эти величины зависят от степени деформации при волочении и количества оставшейся присадки в штабиках (и соответственно в проволоке). В проволоке одного и того же диаметра размеры пузырьков находятся в пределах от 1200 до 50 Å. Средняя их величина с уменьшением диаметра проволоки изменяется от 0,08 до 0,03—0,05 мкм. Расстояния между пузырьками по мере уменьшения диаметра проволоки сокращаются и достигают постоянной величины, примерно в два-три раза превышающей размеры соседних пузырьков, но не более 0,5 мкм.
Расстояние между рядами для проволок диаметром < 500 мкм приближается к расстоянию между пузырьками в рядах и обычно оно меньше 0,5 мкм.

При определенном критическом расстоянии между пузырьками в ряду (в два-три раза больше диаметра пузырьков) ряды пузырьков препятствуют движению границы кристалла в направлении, перпендикулярном оси проволоки, кристалл растет преимущественно в направлении оси проволоки. Однако при наличии участка с большим расстоянием между пузырьками (или отсутствии ряда пузырьков) возможен «прорыв» ряда и рост границы в направлении, перпендикулярном оси, до следующего ряда пузырьков. Между рядами в направлении оси проволоки граница движется быстро, так как она встречает препятствие только в виде одного пузырька. В результате образуется структура, состоящая из пальцеобразных кристаллов, с границами, почти параллельными оси проволоки. Границы имеют только короткие участки, перпендикулярные оси проволоки.

Поскольку поверхность раздела кристаллов преимущественно параллельна оси проволоки, получается проволока со структурой, в которой исключено скольжение границ зерен и провисание нитей накала.

3. МЕХАНИЧЕСКИЕ СВОЙСТВА ВОЛЬФРАМА

Механические свойства вольфрама сильно зависят от способа получения, предшествующей механической и термической обработки, содержания примесей и присадок.

Свойства при растяжении

Вольфрам обладает высокой прочностью при комнатной и повышенных температурах в деформированном состоянии. Предел прочности тонкой вольфрамовой проволоки выше предела прочности других металлов. Ниже приведены значения предела прочности вольфрама после различной степени деформации (исходный материал — спеченные штабики) [28]:

Диаметр кованого прутка, мм	6,35	2,54	1,27	
σв, кгс/мм²	49	105	140	
Диаметр тянутой проволоки, мм	0,635	0,254	0,127	0,013
σв, кгс/мм²	157	175	210	420
Толщина листа, мм	1,02	0,508	0,254	
σв, кгс/мм²	84	140	210	

На рис. 73 приведена зависимость предела прочности от температуры обычной и монокристаллической вольфрамовой про...
волоки (диаметр 0,15—0,2 мм). Прочность тянутой проволоки уменьшается с температурой, однако при 900° С сохраняется высокое значение прочности. После рекристаллизующего отжига при 2730° С прочность проволоки резко падает во всем интервале температур. Прочность монокристаллической проволоки занимает промежуточное положение [9]. В табл. 29 сопоставлены прочности на растяжение проволок из вольфрама марок ВЧ, ВА и ВТ (1% ThO₂) после отжига в течение 1 ч при различных температурах [6]. Можно видеть, что прочность проволоки из вольфрама с присадками уменьшается после отжига при температурах 800—1300° С в меньшей степени, чем из чистого вольфрама.

При температурах ниже 100—150° С от температуры зависит только предел прочности вольфрама. Удлинение и сужение в этих условиях равны нулю.

Следует учитывать, что значения механических свойств вольфрама сильно зависят от скорости деформации, особенно при температурах в области перехода из пластичного состояния в хрупкое [31].

Таблица 29

<table>
<thead>
<tr>
<th>Температура отжига, °С</th>
<th>σₚ, кгс/мм², для проволоки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ВЧ</td>
</tr>
<tr>
<td></td>
<td>диаметр 0,3—0,1 мм</td>
</tr>
<tr>
<td>25</td>
<td>250—300</td>
</tr>
<tr>
<td>400</td>
<td>255—305</td>
</tr>
<tr>
<td>800</td>
<td>212—254</td>
</tr>
<tr>
<td>1100</td>
<td>147—177</td>
</tr>
<tr>
<td>1300</td>
<td>130—156</td>
</tr>
</tbody>
</table>

Твердость

Спеченные вольфрамовые штабики имеют твердость НВ 255. Твердость кованых прутков в зависимости от степени деформации возрастает с 400 до 488 по Виккерсу [9]. Ниже приведены значения твердости вольфрама при различных температурах по Бринелю (нагрузка 3000 кгс):

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>НВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>—154</td>
<td>465</td>
</tr>
<tr>
<td>—60</td>
<td>361</td>
</tr>
<tr>
<td>—7</td>
<td>306</td>
</tr>
<tr>
<td>20</td>
<td>262</td>
</tr>
<tr>
<td>288</td>
<td>126</td>
</tr>
<tr>
<td>520</td>
<td>100</td>
</tr>
<tr>
<td>1150</td>
<td>62</td>
</tr>
<tr>
<td>1626</td>
<td>40</td>
</tr>
</tbody>
</table>
Упругие характеристики

Как видно из рис. 74, вольфрам имеет высокий модуль упругости и уступает в этом отношении только трем металлам — осмию, иридию и рению. Модуль упругости (модуль Юнга) изменяется от 41 000 кгс/мм² при 25°С до 22 700 кгс/мм² при 2400°С [32]. Модуль сдвига (модуль кручения) для тонкой вольфрамовой проволоки увеличивается с возрастанием степени деформации, и для тонких проволок его значение равно 22 000 кгс/мм² [9]. Для монокристаллической проволоки модуль упругости равен 39 400 кгс/мм², а модуль сдвига 15 350 кгс/мм² [33]. Коэффициент сжимаемости \(\beta \) (коэффициент всестороннего сжатия) у вольфрама ниже, чем у всех металлов. Для кованого прутка диаметром 4,8 мм при 30°С \(\beta = 2,93 \cdot 10^{-7} \) см²/кгс (при давлении 1 кгс/см²), для проволоки диаметром 0,51 мм \(\beta = 3,5 \cdot 10^{-7} \) см²/кгс [34].

Длительная прочность и ползучесть

Как видно из рис. 75, по величине длительной прочности в интервале температур 800—1300°С вольфрам значительно превосходит молибден, тантал и ниобий [29]. Скорость ползучести нелегированного вольфрама в интервале температур 2250—2800°С при испытаниях в течение 4 ч приведена в табл. 30 [35].

Испытания вольфрамовой проволоки на ползучесть (по величине остаточного удлинения) служат эффективным методом прогнозного контроля качества проволоки из вольфрама марки ВА. Так, если проволока из вольфрама ВА диаметром 1,25 мм и длиной 400 мм при испытании на ползучесть под нагрузкой 1,73 кгс/мм² с выдержкой 4 ч при 2600°С имеет остаточное удлинение не выше 3 мм, то последующая ее деформация до
выходного диаметра 0,5 мм обычно приводит к получению необходи- димой структуры рекристаллизованной проволоки для эксплуа- тации при рабочих температурах выше 1900°С [36].

ГЛАВА VIII

СПЛАВЫ НА ОСНОВЕ ВОЛЬФРАМА
И КАРБИДА ВОЛЬФРАМА

1. ЖАРОПРОЧНЫЕ СПЛАВЫ

Вольфрам превосходит другие материалы в отношении жаро- прочности при температурах до 1500—1600° С. Поэтому он слу- жит основой для создания наиболее высокопрочных сплавов, которые одновременно были бы достаточно пластичными. Жаропрочные сплавы на основе вольфрама подразделяют на три группы:

а) сплавы — твердые растворы (замещения) легирующих ме- таллов в вольфраме;

б) дисперсионно твердеющие сплавы, упроченные дисперси- ными частицами тугоплавких избыточных фаз, преимущественно карбидов;
в) дисперсионно упрочненные сплавы, получаемые методами порошковой металлургии, в которых дисперсными фазами служат окислы (ThO₂, ZrO₂ и др.), карбиды и нитриды.

Возможно сочетание легирования с образованием твердого раствора и дисперсионного упрочнения.

Сплавы — твердые растворы

Поскольку вольфрам наиболее тугоплавкий металл, все легирующие металлы будут снижать температуру его плавления. В меньшей степени, чем другие металлы, снижают температуру плавления вольфрама тугоплавкие металлы Ta, Nb, Mo, Re (рис. 76).

Рис. 76. Влияние легирующих элементов на температуру плавления вольфрама

Первые три металла образуют с вольфрамом непрерывные ряды твердых растворов (рис. 77, а, б, в). Растворимость рения в вольфраме достигает 31,5% (по массе) (рис. 77, в). Легирование вольфрама тугоплавкими металлами, образующими твердые растворы замещения, приводит к повышению его жаропрочности при не-
значительном снижении температуры плавления. Небольшие добавки легирующих металлов (Zr, Nb) вследствие взаимодействия с примесями внедрения приводят к очистке вольфрама и, следовательно, к повышению пластичности. Если при этом выделяются стабильные дисперсные карбидные фазы, возрастает прочность и сопротивление рекристаллизации вольфрама.

![Diagram](image)

Рис. 77. Диаграммы состояния вольфрама с танталом (a), ниобием (b), молибденом (в) и рением (g)

В настоящее время производятся и находят применение в электронике, ракетной технике и других областях сплавы вольфрама с молибденом, рением, ниобием и танталом, а также сплавы с небольшими легирующими добавками циркония и титана. Обзор разработанных жаропрочных сплавов на основе вольфрама содержится в работах [1—6].

Сплавы вольфрама с молибденом

Для различных назначений производятся сплавы вольфрама с содержанием от 0,5 до 50% Mo. Легирование молибденом в количестве выше 2,5% существенно увеличивает прочность вольфрама при 1650° C. Наиболее прочностью отличается сплав W—15% Mo, который получают дуговой плавкой. После горячей экструзии при 2200° C сплав кутируется при 1100° C. После от-
жига при 1100—1200° C сплав имеет следующие показатели прочности в сравнении с чистым вольфрамом (кгс/мм²) [6]:

Температура, °C . . . 1370 1650 1927 2200
σₚ, кгс/мм²:
чистого вольфрама . 35,1 14,1 7,0 4,5
сплава W — 15% Mo 27,1 17,6 9,5 4,9

Температура перехода сплава W — 15% Mo (после ковки и отжига) из пластичного состояния в хрупкое равно 175° C, что на 80—90° C ниже, чем чистого вольфрама. Сплав этого состава используется для изготовления поковок ракетных сопел [9].

Сплав W — 50% Mo (сплав MB50), получаемый методом порошковой металлургии, используют в электровакуумной и электроосветительной технике.

Сплав обладает более высокой пластичностью по сравнению с чистым вольфрамом и при повышенных температурах обладает прочностью, близкой к прочности вольфрама. Существенным преимуществом сплава MB-50 является высокое электросопротивление (рис. 78). Данные о механических и электрических свойствах проволоки из сплава MB-50 содержатся в работе [7].

Сплавы вольфрама с рением

Влияние рения на механические свойства вольфрама необычно. При введении в вольфрам 5% Re одновременно повышается жаропрочность и пластичность вольфрама. «Ренийовый эффект» был впервые установлен Гичем и Юзом [9] и в дальнейшем подтвержден в работах Джави [10] и Е. М. Савицкого с соавторами [8].

Из данных табл. 31 следует, что упрочняющее действие рения особенно сильно проявляется после отжига при 1800—2000° C.

Оптимальным сочетанием прочности и пластичности с высокой технологичностью обладают сплавы, в которых содержание рения приближается к границе растворимости (20—30%). Переход рекристаллизованных сплавов W — 25% Re и W — 30% Re из пластичного состояния в хрупкое наблюдается при температурах 120 и 50° C соответственно, тогда как для рекристаллизованного вольфрама переход происходит при 400° C [8].

Как видно из рис. 79, сплав вольфрама с 25% Re обладает при температурах 1600—2000° C высокой длительной прочностью.

Добавки рения существенно улучшают свойства вольфрамовой проволоки марки ВА (с кремнеземистой и алюминиевой присадками). При введении 3 и 5% Re (сплавы ВАР-3 и ВАР-5) в три-четыре раза повышается относительное удлинение проволоки
ИЗМЕНЕНИЕ ПРЕДЕЛА ПРОЧНОСТИ ПРОВОЛОКИ ИЗ ВОЛЬФРАМСОДЕРЖАЩИХ СПЛАВОВ σ_0, кгс/мм2, В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ОТЖИГА [11]

<table>
<thead>
<tr>
<th>Содержание Re, % (по массе)</th>
<th>σ_0, кгс/мм2, в деформированном состоянии</th>
<th>σ_0, кгс/мм2, после отжига при температуре, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% W</td>
<td>320</td>
<td>220 180 160 150 140 85 80</td>
</tr>
<tr>
<td>0,5</td>
<td>330</td>
<td>220 200 170 150 130 85 90</td>
</tr>
<tr>
<td>2,75</td>
<td>330</td>
<td>220 200 160 150 130 85 90</td>
</tr>
<tr>
<td>4,75</td>
<td>330</td>
<td>220 180 160 150 140 110 90</td>
</tr>
<tr>
<td>8,8</td>
<td>330</td>
<td>220 180 170 150 140 110 90</td>
</tr>
<tr>
<td>21,0</td>
<td>370</td>
<td>230 190 180 180 170 170 150</td>
</tr>
</tbody>
</table>

марки ВА после отжига при 2050° С. После отжига проволоки из сплава БАР-5 при 1950—2500° С относительное удлинение равно 15—20%, тогда как проволока из сплава ВА после отжига при 1900—2000° С полностью теряет пластичность ($\delta = 1—2\%$) [12].

Рис. 79. Длительная прочность сплава W — 25% Re (испытание в атмосфере водорода) при температурах, °С:

I — 1600; II — 2000; III — 2200; IV — 2400; V — 2600; VI — 2800;
I — спеченный при 2400° C; 2 — то же, при 3000° C; 3 — слиток дуговой плавки

Проволока из сплава W — 20% Re (BP-20) в сочетании с проволокой из сплава BP-5 используется для изготовления высоко-температурных термопар.

Разработаны тройные сплавы W—Mo—Re, сочетающие высокую прочность с пластичностью. Температура рекристалли-
заиции этих сплавов на 100—200° С выше температуры рекристаллизации двойных сплавов [8, 13]. Наиболее перспективные из них сплавы состава, % (по массе): 32,6 W; 34,2 Mo; 33,2 Re и 56 W; 16 Mo; 28 Re.

О причинах повышения пластичности высказываются различные предположения. Одна из возможных причин — перераспределение кислорода и образование сложных вольфрамамминевых окислов, которые располагаются не в виде хрупких пограничных пленок, а в виде включений (глобулей) как в самих зернах, так и на границах. При таком распределении окислы не оказывают заметного охрупчивающего действия [14].

Сплавы вольфрама с решением получают методами порошковой металлургии и плавки. При использовании метода порошковой металлургии порошок вольфрама тщательно перемешивают с перенатом аммиака, смесь затем восстанавливают водородом при 480—500° С. Порошок прессуют в штабики, которые после предварительного спекания при 1100° С нагревают в сварочном аппарате прямым пропусканием тока при температуре до 2400—2500° С в течение 20 мин. Ковка штабиков до прутков размером 2,5 мм и волочение проволоки проводятся по режимам обработки вольфрама. Для выбывки слитков сплавов в дуговых или электронолучевых печах большей частью используют спеченные штабики, соединяемые в пакет.

Сплавы вольфрама с решением используют, как и тройные сплавы W—Mo—Re, преимущественно в электровакуумной технике для катодов и других деталей, требующих материала, обладающего повышенной пластичностью и высокой температурой рекристаллизации.

Важное дополнительное преимущество сплавов — малая скорость испарения при температурах эксплуатации и высокое электросопротивление. Так, при 20° С удельное сопротивление вольфрама \(\rho_W = 5,5 \cdot 10^{-6} \) Ом·см,

а у сплава W — 27% Re \(\rho_{спл} = (28:30) \cdot 10^{-6} \) Ом·см.

Сплавы вольфрама с ниобием и танталом

Установлено, что существенное повышение высокотемпературной прочности достигается при растворении в вольфраме небольших количеств (0,5—5%) ниобия и тантала. При содержании 1,5—3,5% ниобия и тантал в большей степени, чем молибден, повышают жаропроч-

<table>
<thead>
<tr>
<th>(t, \degree С)</th>
<th>(\sigma_б, \text{krc/мм}^2)</th>
<th>(\delta, %)</th>
<th>(\psi, %)</th>
<th>(E^*, \text{krc/мм}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>20—24</td>
<td>45—48</td>
<td>80—90</td>
<td>36 000</td>
</tr>
<tr>
<td>1 500</td>
<td>14—15</td>
<td>48—58</td>
<td>90—95</td>
<td>34 000</td>
</tr>
<tr>
<td>1 700</td>
<td>12—14</td>
<td>48—52</td>
<td>90—95</td>
<td>32 000</td>
</tr>
<tr>
<td>2 000</td>
<td>8—8,5</td>
<td>60—70</td>
<td>95—96</td>
<td>28 000</td>
</tr>
<tr>
<td>2 250</td>
<td>6,0</td>
<td>70—72</td>
<td>95—96</td>
<td>—</td>
</tr>
</tbody>
</table>

*Е при 20° С равен 40 000 кгс/мм².
ность вольфрама [21]. На рис. 80 сопоставлена прочность вольфрама и его сплавов с Nb и Ta, выплавленных в дуговой печи и экструдированных при 1795—2065°C с обжатием 87,5% [20]. В табл. 32 приведены механические свойства отечественного сплава BB2 (вольфрам, легированный нюбиеем), рекомендованного для работы при температурах выше 1700°C:

![Graph](image)

Рис. 80. Прочностные свойства сплавов W—Nb (a) и W—Ta (b):

1 — 100% Nb; 2 — W — 0,5% Nb; 3 — W — 0,75% Nb; 4 — W — 1% Nb; 5 — W — 1,3% Nb; 6 — W — 2% Nb; 7 — W — 1,6% Ta; 8 — W — 3,3% Ta

При 1500°C длительная прочность этого сплава при времени испытаний 50, 100 и 500 ч равна 7; 6—6,5 и 5 кгс/мм² соответственно [17]. Обзор свойств ряда других сплавов систем W—Nb, W—Ta, а также W—Ta—Nb и W—Ta—Mo—Nb содержится в работах [2, 4, 6].

Дисперсно-упрочненные сплавы

Для упрочнения вольфрама могут быть использованы тугоплавкие, термодинамически устойчивые при высоких температурах и малорасторвимые в вольфраме соединения — окислы, карбиды, нитриды [18].

В промышленной практике в качестве упрочнителя вольфрама уже более полувека используется двукись тория, которая вводится в вольфрам в количестве от 0,7 до 5%. Для равномерного распределения упрочнителя в водную пульпу WO₃ вводят нитрат тория. После выпарки, сушки и прокаливания восстанавливают WO₃ с присадкой ThO₂ водородом, получая порошок вольфрама, из которого изготовляют вольфрамовые штабики с торцевой присадкой. Штабики подвергают механической обработке (ковка, протяжка) по режимам, описанным выше. Введение окиси тория
повышает температуру рекристаллизации деформированного вольфрама и способствует сохранению мелкозернистой структуры при высокотемпературном нагреве.

Помимо повышения жаропрочности, присадки ThO₂ увеличивают электронную эмиссию вольфрамовых катодов прямого накала электронных и газоразрядных приборов. Торированный вольфрам используют также для изготовления крючков и пружин генераторных ламп и нерасходуемых сварочных электродов, а также в ракетно-космической технике [18]. В отечественном производстве выпускают сплавы ВТ-7 (0,7% ThO₂); ВТ-10 (1,0%); ВТ-15 (1,5%) и ВТ-50 (5%) [12].

Высокую прочность в сочетании с хорошей пластичностью имеют сплавы W—Re с упрочняющей добавкой ThO₂ (2%). Для нужд электролизуемой и электроосветительной техники производят сплавы W—5% Re — 2% ThO₂ (BP5T2), W—10% Re — 2% ThO₂ (BP10T2) и W — 20% Re — 2% ThO₂ (BP20T2).

Листы из сплава W — 5% Re — 2% ThO₂ отличаются высокой жаропрочностью, что видно из приведенных ниже значений прочности [21]:

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>σв, кгс/мм²</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1090</td>
</tr>
<tr>
<td>925</td>
<td>11</td>
</tr>
</tbody>
</table>

Помимо ThO₂, эффективными упрочняющими соединениями могут служить TaC, NbC, HfO₂, ZrO₂ и ZrN [18, 19].

Большой интерес представляют сплавы с дисперсными нитридами ZrN и HfN, образованными в результате внутреннего азотирования сплава вольфрама, содержащего цирконий и гафний. В этом случае обеспечивается высокая дисперсность упрочняющей фазы [22, 23].

Упрочнение вольфрама за счет образования твердых растворов и дисперсных выделений карбидов использовано при разработке ряда сплавов на основе вольфрама. С этой целью в вольфрам вводятся небольшие количества металлов Ti, Zr, Ta, Nb наряду с добавками углерода до 0,2% [2—5].

Низкая жаростойкость сплавов на основе вольфрама при температурах выше 500°C вызывает необходимость в их защите при работе в окислительных средах при высоких температурах. Разработанные защитные покрытия рассмотрены в монографии [41]. Следует отметить, что надежные защитные покрытия для длительной эксплуатации в настоящее время еще не разработаны.

При использовании дисперсно упрочненного вольфрама в виде проволоки в качестве армирующего материала в никелевых волокнистых композициях, применяемых в ракетно-космической технике, низкая жаростойкость вольфрама не имеет существенного значения [18].
2. КОМПОЗИЦИОННЫЕ ПСЕВДОСПЛАВЫ И СПЛАВЫ ВЫСОКОЙ ПЛОТНОСТИ (ТЯЖЕЛЫЕ СПЛАВЫ)

К этой важной группе сплавов на основе вольфрама относятся получаемые методом порошковой металлургии псевдосплавы W—Cu и W—Ag и высокоплотные тройные сплавы W—Ni—Cu и W—Ni—Fe.

Псевдосплавы с медью и серебром

Вольфрам и медь практически нерастворимы друг в друге как в жидком, так и в твердом состоянии. То же можно сказать и о системе вольфрам—серебро; в жидком серебре при 1400°С растворяется лишь несколько десятых долей процента вольфрама. Вследствие этого сплавы W—Cu и W—Ag нельзя получить прямым сплавлением чистых компонентов. Методом порошковой металлургии получают псевдосплавы, представляющие собой тесные механические композиции частиц вольфрама и меди, вольфрама и серебра. В сплавах подобной структуры твердость, износустойчивость и сопротивление электроозории (свойства, характерные для вольфрама) сочетаются с высокой электропроводностью, теплопроводностью и пластичностью меди или серебра. Благодаря этому псевдосплавы W—Cu и W—Ag уже давно широко применяются в электroteхнике для изготовления электроконтактов, работающих в тяжелых условиях, например для электродов контактной электросварки, рубильников, прерывателей высокого напряжения и т. п. В качестве примера укажем, что замена медных контактов сплавом W—Cu при контактной сварке увеличивает в 20—30 раз срок службы контакта.

В последние годы появились новые применения псевдосплавов. Важнейшие из них — изготовление прессового инструмента для прессования прутков, труб и других изделий из титановых сплавов и сопел неохлаждаемых ракетных двигателей ("потеющих" материалов) [17, 19]. Охлаждение сопла из псевдосплава обеспечивается за счет испарения меди и серебра (теплоты испарения этих металлов равны 72,8 и 61,0 ккал/моль) [24].

Псевдосплавы W—Cu и W—Ag преимущественно получают методом пропитки пористой вольфрамовой заготовки расплавленной медью или серебром. Тщательное сопоставление метода пропитки с методом механического смешивания порошков с последующим прессованием и спеканием заготовки показало, что основные свойства (плотность, твердость, электропроводность) существенно выше у заготовок, полученных методом пропитки [25]. Количество меди и серебра в сплаве, полученном методом пропитки, зависит от пористости заготовки. Последняя регулируется изменением давления прессования и крупностью (набором зерен) исходного вольфрамового порошка. Для придания им механической прочности спрессованные заготовки спекают в сухом водороде при температурах 950—1250°С.
Технология пропитки и факторы, влияющие на качество сплавов, детально рассмотрены в работе Матта и Варга на примере получения заготовок для ракетных сопел из сплава W—Ag [24]. Спеченную заготовку вольфрама плотностью 75—83 % от теоретической помещают в графитовый тигель на подставку из графита или окиси алюминия. Тигель с заготовкой нагревают в атмосфере сухого водорода (точка росы —30°С) в индукционной печи до температуры выше температуры плавления серебра. Пропитку матрицы проводят путем подачи жидкого серебра сверху или снизу с определенной скоростью из такого расчета, чтобы газы успевали удаляться из пор заготовки.

При найденных оптимальных режимах для пропитки серебром заготовки массой 68 кг требуется от 30 до 60 мин. Существенное значение имеет выдержка нагретой заготовки перед пропиткой в водороде в течение 30—60 мин для восстановления пленок окислов на частицах вольфрама, что улучшает смачивание вольфрама медью или серебром [24]. Псевдосплавы W—Cu и W—Ag содержат в зависимости от назначения от 12 до 30 % (объемн.) Cu или Ag.

Плотность и электропроводность сплавов являются аддитивными свойствами и линейно изменяются с изменением составов сплавов, выраженных в объемных процентах [25].

Сплавы W—Cu и W—Ag хорошо поддаются механической обработке. Сплавы W—20—25 % Cu имеют твердость НВ 285—290, предел прочности σв = 75—80 кгс/мм², относительное удлинение δ = 3—5 %, поперечное сжатие ϕ = 7—8 %, модуль упругости E = 30—32 тыс. кгс/мм².

Сплавы высокой плотности (тяжелые сплавы)

К этой группе относятся сплавы на основе вольфрама с плотностью от 16 до 18,5 %, в которых кристалллиты вольфрама окружены (сцементированы) прослойками из сплава Cu—Ni или Ni—Fe. В этих сплавах высокая плотность и прочность сочетаются с пластичностью. Сплавы можно деформировать на холоду. Высокоплотные сплавы W—Cu—Ni (BHM) и W—Ni—Fe (BНЖ) используют для изготовления роторов гидроскопов, противовесов к рулям управления самолетов, сопел ракет, экранов для защиты от проникающих излучений, контейнеров для хранения радиоактивных изотопов.

Содержание вольфрама в сплавах BНМ и BНЖ колеблется от 90 до 97 %. Сплавы BНМ содержат 2—8 % Ni и 1—4 % Cu, количество и соотношение Ni : Cu изменяется в широких пределах в зависимости от назначения сплава. В сплавах BНЖ соотношение Ni : Fe изменяется примерно от 7 : 3 до 1 : 1 при абсолютном содержании Ni от 1,5 до 7 % и Fe от 1,2 до 5 %.

В табл. 33 приведен состав и некоторые свойства отечественных и зарубежных сплавов BНМ и BНЖ. Характеристика сплавов BНМ и BНЖ, выпускаемых рядом зарубежных фирм, и области их применения содержатся в публикациях [28, 29].

233
Состав и некоторые свойства сплавов ВНЖ и ВНМ

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Содержание элемента, % (по массе)</th>
<th>Плотность, г/см³</th>
<th>Механические свойства при 200 С</th>
<th>Литературный источник</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>Ni</td>
<td>Cu</td>
<td>Fe</td>
</tr>
<tr>
<td>ВНЖ 7—3</td>
<td>90</td>
<td>7</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>ВНЖ 3,5—1,5</td>
<td>95</td>
<td>3,5</td>
<td>—</td>
<td>1,5</td>
</tr>
<tr>
<td>ВНМ 2—1</td>
<td>97</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>ВНМ 3—2</td>
<td>95</td>
<td>3</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>ВНМ 5—3</td>
<td>92</td>
<td>5</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>ВНМ 6—4</td>
<td>90</td>
<td>6</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>ВНЖ 7—3</td>
<td>90</td>
<td>7</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>ВНЖ 5—5</td>
<td>90</td>
<td>5</td>
<td>—</td>
<td>5</td>
</tr>
</tbody>
</table>

(деформированный)

Сплавы W—Ni—Cu и W—Ni—Fe получают методом порошковой металлургии. Порошки компонентов сплава тщательно перемешивают, смеси прессуют на гидравлических прессах под давлением 1—2 тс/см². Заготовки спекают в водороде при температурах 1480—1520 С.

Максимальные значения плотности, прочности и пластичности достигаются для каждого состава сплава при оптимальном режиме спекания (температура, скорость охлаждения и др.).

В процессе спекания цементирующие связи Cu—Ni и Ni—Fe образуют жидкую фазу, в которой вольфрам частично растворяется. Вследствие этого при спекании происходит перекристаллизация частиц вольфрама через жидкую фазу и рост частиц. Структура сплава состоит из зерен вольфрама округленной формы и прослоек твердого раствора вольфрама в Ni—Cu или Ni—Fe основе (рис. 81).

Кинетику усадки и роста зерен в процессе спекания вольфрама в сплавах W—Ni—Cu изучали в работе [27]. Энергия активации процесса усадки равна 70 ккал/моль, скорость роста зерен вольфрама пропорциональна корню кубическому из времени спекания.

Механизм роста зерен вольфрама в сплавах W—Ni—Cu и W—Ni—Fe изучали в работах [31, 32]. К процессу спекания в этих системах применимы основные положения, сформулированные Киппом для случая спекания в присутствии жидкой фазы [33]: высокая плотность при спекании достигается при достаточной растворимости твердой фазы в жидкой составляющей сплава, если обеспечен необходимый мнимум жидкой фазы и полное смачивание твердой фазы жидкостью. Формирование зерен сплава
происходит в результате действия двух механизмов: растворения — осаждения (перекристаллизация) и коалесценции пар и групп зерен вольфрама за счет их припекания [32].

Как видно из табл. 33, сплавы ВНЖ превосходят по прочности и пластичности сплавы ВНМ. Однако следует учитывать, что сплавы ВНЖ магнитны, тогда как сплавы ВНМ не обладают магнитными свойствами и могут использоваться для изготовления роторов гирокопов.

В настоящее время освоено производство крупных заготовок из тяжелых сплавов диаметром 250 и длиной 510 мм и фасонных изделий (кольца, диски, пластины и др.).

3. КАРБИДЫ ВОЛЬФРАМА И ТВЕРДЫЕ СПЛАВЫ

Система W — C. Свойства карбидов вольфрама

На рис. 82 приведена диаграмма состояния системы W — C, построенная Сара [34]*. Вольфрам образует два карбида W₂C и WC. Последний существует в двух модификациях α-WC и β-WC. Карбид W₂C плавится конгруэнтно при температуре 2795° C и имеет значительную область гомогенности. Высокотемпературная модификация монокарбида β-WC образуется по перитектической реакции при 2785° C и распадается при охлаждении на α-WC и W₂C. Фаза β-WC имеет переменный состав WC₁₋ₓ (0 ≤ x ≤ 0,41). Фаза α-WC стабильна в широком интервале темпе-

* Впервые система W — C была построена Сайкесом [35]. В главных чертах она правильна, однако в ней внесены поправки в связи с открытием полиморфной модификации β-WC.†
тур и не имеет области гомогенности. Поэтому небольшие отклонения от стехиометрического состава приводят к появлению вторых фаз — W_2C или графита.

При температурах ниже $2450^\circ C$ в системе W—C существуют только два устойчивых карбидов W_2C и α-WC. Растворимость углерода в вольфраме при температуре эвтектики ($2710^\circ C$) со-

![Diagram](image)

Рис. 82. Диаграмма состояния системы W—C

ствляет около 0,3% (ат.) и понижается до $\sim 0,02\%$ при $1650^\circ C$ [33]. Некоторые физические свойства карбидов вольфрама приведены в табл. 34.

Гупта и Сайгал вывели следующие уравнения для стандартной свободной энергии образования карбидов вольфрама [45]:

$$\Delta G^\circ (WC) = -10000 + 1,9 \ T \pm 100 \text{ кал/моль} (1150 — 1575 \ K);$$

$$\Delta G^\circ (W_2C) = -7300 — 0,56 \ T \pm 100 \text{ кал/моль} (1575 — 1660 \ K).$$

Карбиды вольфрама, подобно карбидам других тугоплавких металлов, обладают металлической проводимостью и положительным коэффициентом электросопротивления. Атомы углерода, имеющие малый атомный радиус, расположены в междоузлях металлической решетки, образуя структуру «внедрения» (рис. 83). Внутренние напряжения, возникающие в кристаллической решетке
Таблица 34

<table>
<thead>
<tr>
<th>Свойство</th>
<th>(\alpha\text{-W}_2\text{C}^*)</th>
<th>(\alpha\text{-WC}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип и параметры решетки</td>
<td>Плотная гексагональная; пространственная группа (\text{C}_6), (a = 2,985); (c = 4,717 \AA) при 29,2% C (ат.) [37] (a = 3,001); (c = 4,728 \AA) при 33,3% C (ат.) [37]</td>
<td>Простая гексагональная, типа WC (a = 2,906); (c = 2,837 \AA) [37]</td>
</tr>
<tr>
<td>Плотность, г/см(^3)</td>
<td>17,2</td>
<td>15,7</td>
</tr>
<tr>
<td>Микротвердость, кгс/мм(^2)</td>
<td>1990</td>
<td>2080 ((25^\circ) \sim 1000) (при 1000° C)</td>
</tr>
<tr>
<td>Модуль упругости, кгс/мм(^2)</td>
<td>42800</td>
<td>72700</td>
</tr>
<tr>
<td>Предел прочности при растяжении, кгс/мм(^2)</td>
<td>Ниже, чем у WC</td>
<td>350</td>
</tr>
<tr>
<td>Предел прочности при изгибе, кгс/мм(^2)</td>
<td>То же</td>
<td>560</td>
</tr>
<tr>
<td>Температура плавления, °C</td>
<td>2700±50</td>
<td>2755 (^*)</td>
</tr>
<tr>
<td>Коэффициент расширения, 10(^{-6})</td>
<td>1,2 (для (a)), 11,4 (для (c))</td>
<td>5,2 (для (a)), 7,3 (для (c))</td>
</tr>
<tr>
<td>Теплопроводность, кал/(см·с·град)</td>
<td>—</td>
<td>0,29</td>
</tr>
<tr>
<td>Энталпия образования (\Delta H_{298K}^0), ккал/моль</td>
<td>(-6,3\pm0,6) [39]</td>
<td>(-9,67\pm0,4)</td>
</tr>
<tr>
<td>Энтропия (S_{298K}^0)</td>
<td>19,5±1 [39]</td>
<td>10,1±1 [39]</td>
</tr>
<tr>
<td>Удельная теплоемкость, кал/(моль·град)</td>
<td>(C_p = 21,45 + 2,6 \times 10^{-3} T - 3,48 \times 10^{5} T^{-2}) [39]</td>
<td>(C_p = 12,27 + 2,06 \times 10^{-3} T - 2,68 \times 10^{5} T^{-2}) [39]</td>
</tr>
<tr>
<td>Удельное электросопротивление, Ом·см·10(^{-6})</td>
<td>80</td>
<td>22</td>
</tr>
<tr>
<td>Температура перехода в сверхпроводящее состояние, К</td>
<td>2,74</td>
<td>1,28</td>
</tr>
</tbody>
</table>

\(^*^1\) В литературе имеются сведения о высокотемпературной модификации \(\beta\text{-W}_2\text{C} \), что, однако, окончательно не установлено.

\(^*^2\) \(\beta\text{-WC} \) кристаллизуется в кубической решетке, тип \(\text{B1} \) [37].

\(^*^3\) Разлагается по перитектической реакции на \(\beta\text{-WC} \) и C.
металла при внедрении атомов углерода, вызывают перестройку в расположении металлических атомов.

Прочные межатомные связи в кристаллах карбидов обусловливают их тугоплавкость и высокую твердость. Высокая твердость WC сохраняется при повышенных температурах (см. табл. 34).

Характерная особенность монокарбидов вольфрама — высокая его растворимость в карбидах других тугоплавких металлов, в частности в карбидах титана и тантала, имеющих кубическую решетку.

Кривые растворимости карбидов вольфрама в карбидах других металлов приведены на рис. 84 по данным Я. С. Уманского. Наибольший интерес представляют твердые растворы карбидов вольфрама в карбиде титана, который входит в состав важной группы спеченных твердых сплавов. Растворимость WC в TiC достигает 90, 79 и 72% при 2500, 2000 и 1500°C соответственно [40].

Карбиды WC и W₂C отличаются друг от друга химическим поведением по отношению к смеси плавиковой и азотной кислот и к хлору: W₂C растворяется в смеси, состоящей из 1 ч. HNO₃ (плотность 1,2 г/см³) и 4 ч 40%-ной HF; WC нерастворим в этой смеси. Хлор при 300—400°C действует на W₂C с образованием WCl₆. Монокарбид при этой температуре с хлором не реагирует.

Наиболее распространенным способом получения карбидов WC и W₂C является прокаливание смеси порошкообразного вольфрама с сажей в интервале температур 1000—1500°C.

При получении W₂C смесь стехиометрического состава необходимо прокаливать либо в атмосфере, не содержащей углерода (в среде инертного газа или вакууме), либо строго определенное время, достаточное лишь для образования W₂C. В противном случае происходит дальнейшее науглероживание с образованием WC.
По составу и способам приготовления твердые сплавы можно разделить на две группы:
1) литые карбиды вольфрама;
2) спеченные твердые сплавы.
Сплавы первой группы представляют собой эвтектическую смесь карбидов WC и W₂C. Литые сплавы в связи с их хрупкостью имеют сравнительно ограниченное применение, главным образом для оснащения буровых инструментов и изготовления волок для тонкого волочения проволоки.
Спеченные твердые сплавы металлокерамического типа сочетают высокую твердость с достаточной прочностью; последнее достигается введением в состав сплава добавок «цементирующих металлов» — кобальта и никеля.
Спеченные твердые сплавы являются наиболее производительными современными инструментальными материалами для обработки металлов резанием. Они используются также для изготовления волок для протяжки проволоки, штампов для вырубки деталей, оснащения бурового инструмента.

Производство литых карбидов

Литые карбиды вольфрама в большинстве случаев представляют собой сплавы, близкие по составу к эвтектике WC—W₂C (см. рис. 84). Преимуществом в данном случае является сравнительно низкая температура плавления эвтектики (2525°С). Помимо этого, мелкозернистая структура, характерная для эвтектики, обеспечивает более высокую твердость и износостойчивость сплава. Для получения сплава обычно исходят из порошкообразного вольфрама, карбида с недостатком углерода (до 3% С) или смеси WC + W, в которой содержание углерода не превышает 3%.

Исходный материал быстро расплавляется в графитовом тигле (лодочке), помещенном в печь с графитовой трубой накала, разогретую до 3000—3100°С. Углерод стенок графитовой лодочки растворяется в расплавленном металле. В течение короткого строго контролируемого времени содержание углерода в сплаве достигает 4%, т. е. оказывается близким к составу эвтектики. Тогда содержимое тигля (лодочки) отливается в графитовую форму. В зависимости от назначения сплава отливку производят в форме цилиндрических блоков, превращаемых затем в грубозернистую крупку ¹ или в форму для фасонных изделий — полуцилиндриков, шестигранников, волок и др.

Технологические схемы, применяемые различными производствами, отличаются преимущественно конструкцией печей и способом отливки. Наиболее распространены метод плавки в горизон-

¹ Крупку большей частью используют для засыпки в стальные трубочки, применяемые для наплавки износостойчивых слоев.
тальной печи, корпус которой при разливке поворачивается на угол 45—90° (опрокидывающаяся печь). Сплав выливаются в графитовую форму, конструктивно связанную с плавильным тиглем [41].

Кроме разливки в опрокидывающихся печах, применяется центробежное литье, которое позволяет получать более плотные изделия и изделия сложного и тонкого профиля.

Для понижения температуры плавления сплава и уменьшения его вязкости предложено введение около 5% тантало-ниобиевого карбида в состав шихты для плавки. Тантал, кроме того, несколько повышает прочность литого сплава.

Спеченые твердые сплавы

Состав, структура и свойства сплавов. Использование карбидов вольфрама в чистом виде ограничено их хрупкостью. Создание сплавов, обладающих наряду с высокой твердостью и износостойчивостью также и достаточной прочностью, было осуществлено путем сочетания монокарбида вольфрама с вязкими металлами группы железа, преимущественно кобальтом, образующими вязкую цементирующую фазу. Такие сплавы могут быть получены только методом порошковой металлургии. Последний состоит в том, что смесь порошкообразных карбидов и цементирующего металла прессуют в изделия необходимой формы, которые затем спекают при температурах, близких к температуре плавления цементирующего металла. Первые спеченные твердые сплавы на основе карбида вольфрама WC с добавкой до 10% кобальта были изготовлены в Германии в 1923 г. Шреттером. В 1929 г. их производство было начато в СССР.

Современные спеченные твердые сплавы можно разделить по составу на три группы.

1. Сплавы на основе монокарбида вольфрама WC с добавками от 3 до 30% СCo (реже никеля); к этой группе относятся советские вольфрамокобальтовые сплавы марки ВК₉₉ (индекс № обозначает содержание кобальта в сплаве). К этой же группе относятся сплавы с небольшими (менее 3%) добавками карбидов тантала, ниобия, ванадия, хрома, молибдена.

2. Сплавы, в которых карбид вольфрама сочетается с карбидом титана (от 5 до 30% TiC). Цементирующим металлом и в этой группе сплавов служит преимущественно кобальт, содержание которого изменяется от 4 до 12%. Советские марки сплавов с карбидом титана обозначаются буквами ТК с соответствующими индексами, указывающими содержание карбидов титана и кобальта.

3. Сплавы, в которых карбид вольфрама сочетается с карбидами титана и тантала (иногда карбидом ниобия), — сплавы группы ТТК.

Сплавы указанных групп существенно различаются между собой по структуре, свойствам и областям применения.
Структура простейшего твердого сплава, состоящего из карбида вольфрама и кобальта, характеризуется правильно очерченными или иногда неопределенной формы кристаллами карбида вольфрама, между которыми располагается прослойка цементирующей фазы (рис. 85).

Более сложную структуру имеют сплавы групп ТК и ТТК. В структуре этих сплавов, кроме карбида вольфрама, появляется вторая устойчивая карбидная фаза — твердый раствор карбида вольфрама в карбиде титана. Типичная структура такого сплава приведена на рис. 86. Здесь хорошо различаются три фазы — окружённой формы кристаллы твердого раствора WC—TiC, правильно очерченные кристаллы избыточного (нерасторвившегося в карбиде титана) карбида вольфрама и прожилки цементирующей фазы [56].

Изменяя соотношение между карбидными и цементирующими фазами сплавов и состав карбидных фаз, можно в значительных пределах варьировать свойства сплавов в зависимости от требований, обусловленных условиями применения сплавов.

При уменьшении содержания цементирующего металла (кобальта) увеличивается твёрдость и износостойчивость сплава, но вместе с тем уменьшается прочность и повышается хрупкость. Повышение содержания кобальта позволяет получать более прочные сплавы, выдерживающие даже ударную нагрузку, но менее износостойчивые.

Можно также изменять свойства сплавов, используя исходные карбидные фазы различной зернистости, а также (частично)
видоизменяя режимы измельчения смесей и спекания изделий. Сплавы с мелкозернистой структурой карбидной составляющей обладают повышенной твердостью и износостойчивостью при несколько пониженной ударной вязкости. Однако увеличение размеров зерен карбидных фаз позволяет повысить ударную вязкость сплавов, что важно, например, для сплавов, используемых в буровых инструментах.

В табл. 35 приведены состав и некоторые физические свойства спеченных сплавов, выпускаемых в СССР [42—44].

Обращают на себя внимание весьма высокие сопротивления сжатию, которые выдерживают твердые сплавы, не обнаруживая остаточных деформаций вплоть до разрушения. Так, сплавы ВК6 и Т15К6 имеют сопротивление сжатию 440—490 и 425—430 кгс/мм² соответственно [44]. Отсутствие остаточных деформаций отмечается до определенного содержания кобальта в сплаве (8—10%). Это явление было объяснено наличием в твердом сплаве жесткого карбидного скелета, в пустотах которого располагается цементирующая фаза. При содержании более 10—12% Со карбидные зерна оказываются разъединенными, жесткий скелет частично нарушается, в сплавах появляются остаточные деформации и износустойчивость их оказывается более низкой.

Титанвольфрамовые сплавы обладают по сравнению со сплавами ВК более высокой температурой приваривания к стали (800 против 725° C), меньшей теплопроводностью [0,05—0,07 против 0,14—0,16 кал/(см·с)] и более низким сопротивлением изгибу по сравнению с вольфрамовыми твердыми сплавами. Кроме того, титанвольфрамовые сплавы более устойчивы против окисления. Отличия в свойствах определяют различное поведение инструментов из этих сплавов при обработке ими стали. Важным свойством всех спеченных твердых сплавов является высокая темпера-тура начала потери прочности, лежащая выше 1000° C. Заметим, что температура начала потери прочности быстрорежущей стали около 600° C, а углеродистой стали — около 250° C. Наиболее полный обзор сведений о механических и некоторых физических свойствах спеченных твердых сплавов содержится в двух книгах В. И. Туманова [42, 43].

Вольфрамокобальтовые сплавы (ВК) рекомендуются для обработки чугуна, некоторых цветных металлов, фарфора, эбонита и других материалов, дающих короткую-хрупкую стружку. Сплавы с более высоким содержанием кобальта предназначены для работы в условиях динамической нагрузки, например для грубой обдирки чугуна и перфораторного бурения горных пород.

Титанвольфрамовые сплавы (ТК, а также ТТК) используются для обработки сталей. Сплавы с низким содержанием карбида титана (до 5—6%) применяют для грубой обдирки стали, с содержанием 10—15% TiC — для получистовой обработки и с содержанием выше 20% TiC — для чистовой обработки стали.
<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>BK-3</td>
<td>97</td>
</tr>
<tr>
<td>BK-4</td>
<td>96</td>
</tr>
<tr>
<td>BK-6</td>
<td>94</td>
</tr>
<tr>
<td>BK-8</td>
<td>92</td>
</tr>
<tr>
<td>BK-10</td>
<td>90</td>
</tr>
<tr>
<td>BK-15</td>
<td>85</td>
</tr>
<tr>
<td>BK-20</td>
<td>80</td>
</tr>
<tr>
<td>BK-25</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>BK-3M</td>
<td>97</td>
</tr>
<tr>
<td>BK-6M</td>
<td>94</td>
</tr>
<tr>
<td>BK-10M</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>BK-6 OM</td>
<td>92</td>
</tr>
<tr>
<td>BK-10OM</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>BK-1B</td>
<td>96</td>
</tr>
<tr>
<td>BK-6B</td>
<td>94</td>
</tr>
<tr>
<td>BK-8B</td>
<td>92</td>
</tr>
<tr>
<td>BK-11B</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>BK-8BK</td>
<td>92</td>
</tr>
<tr>
<td>BK-11BK</td>
<td>89</td>
</tr>
<tr>
<td>BK-20K</td>
<td>80</td>
</tr>
<tr>
<td>BK-10KC</td>
<td>90</td>
</tr>
<tr>
<td>BK-20KC</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>T5K10</td>
<td>85</td>
</tr>
<tr>
<td>T14K8</td>
<td>78</td>
</tr>
<tr>
<td>T15K6</td>
<td>79</td>
</tr>
<tr>
<td>T30K4</td>
<td>68</td>
</tr>
<tr>
<td>T5K12</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>TT7K12</td>
<td>81</td>
</tr>
<tr>
<td>TT8K6</td>
<td>84</td>
</tr>
<tr>
<td>TT20K9</td>
<td>71</td>
</tr>
<tr>
<td>TT10K8B</td>
<td>82</td>
</tr>
</tbody>
</table>

Таблица 35

СОСТАВ И НЕКОТОРЫЕ СВОЙСТВА МЕТАЛЛОКЕРАМИЧЕСКИХ ТВЕРДЫХ СПЛАВОВ, ВЫПУСКАЕМЫХ В СССР [42—44]

<table>
<thead>
<tr>
<th>Марка сплава</th>
<th>Состав сплава</th>
<th>ρ, г/см³</th>
<th>σвт, кгс/мм² (не менее)</th>
<th>Особенность изготовления</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-3</td>
<td>97</td>
<td>15,0—15,3</td>
<td>110</td>
<td>89,5</td>
</tr>
<tr>
<td>BK-4</td>
<td>96</td>
<td>14,9—15,2</td>
<td>140</td>
<td>89,0</td>
</tr>
<tr>
<td>BK-6</td>
<td>94</td>
<td>14,8—15,0</td>
<td>150</td>
<td>88,5</td>
</tr>
<tr>
<td>BK-8</td>
<td>92</td>
<td>14,4—14,8</td>
<td>160</td>
<td>87,5</td>
</tr>
<tr>
<td>BK-10</td>
<td>90</td>
<td>14,2—14,6</td>
<td>185</td>
<td>87,0</td>
</tr>
<tr>
<td>BK-15</td>
<td>85</td>
<td>13,9—14,1</td>
<td>180</td>
<td>86,0</td>
</tr>
<tr>
<td>BK-20</td>
<td>80</td>
<td>13,4—13,7</td>
<td>195</td>
<td>84,0</td>
</tr>
<tr>
<td>BK-25</td>
<td>75</td>
<td>12,9—13,2</td>
<td>200</td>
<td>82,0</td>
</tr>
</tbody>
</table>

Сплавы средней зернистости. Для приготовления WC используют вольфрамовые порошки, полученные восстановлением WO₂ при температурах 780—900° C.

Сплавы мелкозернистые (М). Применяют интенсифицированный мокрый размол смесей 72—96 ч и при соотношении шары = 1 : 6—10 (диаметр шаров 5—8 мм).

Состав сложного карбида 28—30% TiC, 70—72% WC.
Физико-химия и технология процессов производства современных твердых сплавов рассмотрены в обстоятельных монографиях В. И. Третьякова [44], Киффер и Шварцкопфа [41].

Производство вольфрамокобальтовых сплавов

Технологическая схема производства сплавов включает следующие основные операции:

1) изготовление исходных материалов — порошков карбида вольфрама и кобальта; 2) приготовление шихты из порошков WC и Co; 3) прессование шихты; 4) спекание.

Приготовление карбида вольфрама. При получении WC обычно исходят из порошкообразного вольфрама, восстановленного из трехокиси вольфрама водородом (см. гл. V). Зернистость исходного порошка зависит от режима восстановления. В зависимости от марки сплава используют тонкодисперсные, среднезернистые или крупнозернистые порошки. Вольфрам и ламповую сажу смешивают в стехиометрических соотношениях (6,1% C в шихте). При расчете шихты учитывается содержание кислорода в исходном вольфраме. Для получения однородной смеси перемешивание ведут в стальных барабанах в течение 4—6 ч. Полученную шихту загружают в графитовые лодочки (или набивают в угольные патроны), которые затем нагревают в угольно-трубчатой печи при 1430—1450 или 1900—2200° C (для особокрупнозернистых сплавов). Загрузку в печь производят периодически или непрерывно путем продвижения лодочек. Во избежание окисления продукта карбидизации проводят в атмосфере водорода.

Процесс карбидизации протекает как за счет взаимодействия с твердым углеродом, так и за счет газовой атмосферы печи. При пропускании в печь водорода могут образоваться углеводороды, в основном ацетилен, которые также участвуют в реакциях карбицидования:

\[
\begin{align*}
\text{H}_2 + 2\text{C} & \rightleftharpoons \text{C}_2\text{H}_2; \\
2\text{W} + \text{C}_2\text{H}_2 & \rightleftharpoons 2\text{WC} + \text{H}_2.
\end{align*}
\]

Исследования кинетики и механизма карбидизации вольфрама показали, что первично образовавшаяся пленка WC реагирует с вольфрамом, что приводит к образованию промежуточного слоя W₂C. В этом слое наблюдается перепад концентрации углерода от границы с карбидом WC до границы с вольфрамом, соответствующий области гомогенности фазы W₂C [461]. Скорость диффузии, определяющая скорость карбидизации вольфрама, описывается уравнением:

\[
D \left(C_1 - C_2 \right) = 2750 \cdot \exp \left(-56 000/T \right),
\]

где \(D \) — коэффициент диффузии;

\(C_1 - C_2 \) — разность пограничных концентраций.

Энергия активации диффузии \(E = 112 000 \text{ кал/моль} \).
Продолжительность карбидизации зависит от температуры и размера зерен порошка. При температурах 1430—1450° С и средней величине частиц 1—2 мкм карбидизация заканчивается за 40—60 мин.

При правильном расчете шихты и соблюдении режима процесса удается получить карбид вольфрама, весьма близкий по составу к формуле WC. Содержание связанного углерода в карбиде обычно колеблется в пределах от 5,9 до 6,12%; содержание свободного углерода не более 0,1%. Полученный WC представляет собой темно-серые, слегка спекшиеся блоки. Карбид измельчают в стальных шаровых мельницах и затем просеивают на вибрационных ситах с размером ячейки 0,1—0,07 мм.

Получение кобальта. Тонкодисперсные порошки металлического кобальта получают восстановлением чистой окиси кобальта при температурах 500—550° С. Высокодисперсную окись кобальта получают термическим разложением щавелевокислого кобальта при 300—350° С. Несколько более крупнозернистая окись получается из карбоната кобальта, который необходимо прокаливать при 500—600° С. Восстановленный кобальтовый порошок прощируют через сито с отверстием ~0,04 мм (325 меш).

Приготовление смесей. Тщательность перемешивания порошков WC + Co — одно из условий получения качественного сплава. Обычно перемешивание сочетается с дополнительным весьма тонким измельчением. Операция проводится в шаровых стальных мельницах, выложенных пластинами из твердого сплава, с шарами из твердого сплава. Большой частью применяют барабаны объёмом 160—180 л с загрузкой шаров 700 и смеси 200 кг.

Для улучшения условий измельчения и перемешивания размол смеси проводят в жидкой среде (большей частью в этиловом спирте). Высокая дизэлектрическая постоянная спирта уменьшает возможность сцепления частиц, что обеспечивает получение более однородной смеси. Время размola в шаровых мельницах составляет 24—48 ч для крупнозернистых и среднезернистых, 72—96 ч для мелкозернистых и 96—120 ч для особомелкозернистых сплавов. Кроме мельниц с врачающимся барабаном, применяют виброразмол. В этом случае барабаны виброуставок имеют небольшой объем (5—10 л).

В последнее время для получения смесей стали использовать установки со стационарным барабаном, в которых шары приводятся в движение лопастной мешалкой, так называемые аттриторы [47]. Размол в аттриторах с получением однородной смеси нужной зернистости достигается за более короткое время, чем в шаровых мельницах [44].

Удаление спирта и сушку смесей проводят в вакуумных дистилляторах с конденсацией испаряющегося спирта.

Формование. Прессование изделий из смеси карбida с цементирующим металлом осуществляется в стальных прессформах на автоматических, механических или гидравлических прессах.

245
Вследствие малой пластичности карбида вольфрама формование изделий возможно лишь при введении в смесь пластикатора. В отечественной промышленности пластикатором служит раствор каучука в бензине. За рубежом применяют спиртовой раствор гликоля, раствор парафина в СCl₄ и другие пластикаторы [41]. Пластифицирующие добавки способствуют более равномерному распределению давления и повышению механической прочности спрессованного изделия. Смеси прессуют под давлением 500—1500 кгс/см².

Объем остаточной пористости спрессованных изделий составляет 30—40%. Последующая прессования изделия сушат при 150—200° С в конвейерных сушилках с нагревом инфракрасными лучами.

Большей частью прессуют изделия необходимой формы или заготовки, требующие лишь небольшой дополнительной механической обработки (например, получение нужного угла наклона грани или получение более сложного профиля). В случае необходимости изготовления изделий сложных конфигураций вместо прессования в стальных прессформах применяют выдавливание пластической смеси через фасонный мундштук. В смесь вводят количество пластикатора (например, чистого парафина), достаточное для заполнения всех пор между частицами смеси в спрессованной заготовке (40—50% объема заготовки). Этим способом получают заготовки для изготовления твердосплавных сверл и других изделий сложной формы. Возможно также получение изделий сложной формы из спрессованных заготовок, содержащих пластикатор, путем их механической обработки [44].

Спекание. Высокотемпературному спеканию прессованных изделий или заготовок часто предшествует предварительное спекание при 600—1000° С. При этом происходит удаление связки и некоторое упрочнение, связанное с увеличением межчастичного контакта. После первого спекания изделия при необходимости могут быть механически обработаны на станках с помощью твердосплавного инструмента, разрезаны и отшлифованы тонкими вращающимися карборуровыми кругами.

Предварительное спекание целесообразно проводить (как это делают на некоторых предприятиях) в две стадии в двухзонных печах. Первоначально с целью удаления пластикатора изделия нагревают в первой зоне при медленном подъеме температуры до 300—400° С. Затем лодочки с изделиями продвигаются во вторую зону для спекания при температуре 700—1000° С [48].

Второе, высокотемпературное, спекание осуществляется при температуре 1390—1500° С в зависимости от содержания цементирующего металла в шихте. Чем выше содержание цементирующего металла, тем ниже должна быть температура спекания. Изделия из смесей WC + Co спекают в трубчатых печах с алундовым муфелем и молибденовыми нагревателями. Сечение алундовых муфелей 100—300 см², длина горячей зоны 1—2 м. Используют различные другие конструкции печей для спекания, в част-
ности печи с открытыми молибденовыми нагревателями. Применявшиеся ранее для спекания твердых сплавов печи с графитовой трубой в настоящее время редко используются.

Спекание изделий осуществляется в графитовых коробках или лодочках. Изделия укладываются на плоские графитовые подкладки в несколько слоев и засыпаются защитной засыпкой. В качестве засыпок применяют графитовый порошок, измельченные отходы угольных труб или смеси, состоящие из магнезита или окиси алюминия и графита или сажи. Лодочки с изделиями непрерывно продвигаются через печь, проходя горячую зону за время от 40 мин до 2 ч. Продолжительность спекания определяется размерами изделий; для мелких изделий необходимо менее длительное спекание, чем для крупных.

Спекание в молибденовых печах всегда проводят в атмосфере водорода. Защитная углеродсодержащая засыпка в последнем случае необходима не для защиты от окисления, а для предотвращения разуглероживания сплава водородом, которое может иметь место в результате протекания реакции: \[2WC + H_2 = 2W + C_2H_2. \]

Физико-химические процессы, протекающие при спекании. Основываясь на исследованиях микроструктуры серий сплавов WC—Co, Виман и Келли (1931 г.) дали качественное описание механизма спекания [49]. Более глубокое понимание протекающих процессов стало возможным на основе исследований тройной системы W—C—Co, выполненных Такеда [50], М. М. Бабичем с сотр. (1936—1940 гг.) [51], Рэуталом и Нортоном [52], И. Н. Чаповской и Е. А. Щетилиной [53].

Опуская общее описание тройной системы, приведем упрощенный псевдобинарный разрез ее по линии WC—Co (рис. 87), который позволяет проследить процессы, протекающие при спекании, например для сплава, содержащего 94% WC и 6% Co. При температуре спекания 1400—1420°С первоначально происходит диффузия карбида вольфрама в твердый кобальт. В точке a (около 2,5% WC) появляется жидкая фаза, количество которой с течением времени увеличивается. При содержании 20% WC в кобальте сплав полностью переходит в жидкое состояние. Далее карбид продолжает растворяться в жидкости до насыщения в точке, лежащей около 40% WC. Этой точкой определяется максимальное количество образуемой при спекании жидкой фазы, которое составляет около 11% от массы сплава, т. е. почти вдвое больше первоначального содержания в нем кобальта.

Присутствие жидкой фазы обусловливает рост зерен карбида путем перекристаллизации из жидкого раствора; крупные зерна WC растут за счет мелких, при этом они приобретают правильно очерченную форму. В процессе спекания происходит усадка сплава как за счет перекристаллизации зерен карбида вольфрама, так и за счет смачивания жидкой фазой нерастворившихся зерен WC и стягивания их силами поверхностного натяжения.
При охлаждении сплава из жидкой фазы, отвечающей по составу точке С, должны первоначально выпадать первичные кристаллы WC, а затем эвтектика WC—Co; однако последняя никогда не обнаруживается в структуре сплава. Причина этого является то, что присутствующие в большом избыточке кристаллы WC служат готовыми центрами кристаллизации для выпадающего из жидкости карбида, тогда как для кобальтового раствора готовых центров кристаллизации нет. Вследствие этого после охлаждения сплава между зернами WC затвердевает однородный кобальтовый твердый раствор с небольшой концентрацией растворенного WC.

![Diagram](image)

Рис. 87. Упрощенный псевдобинарный разрез системы W—C—Co по линии WC—Co

При температуре двойной эвтектики в кобалте растворяется 8—10% WC, а после охлаждения в кобальтовом твердом растворе остается менее 1% WC. При весьма мелкозернистом исходном карбиде и особом режиме спекания можно получить структуру сплава с не полностью рекристаллизованными зернами WC, не имеющими правильно очерченной формы. Такие сплавы обладают более высокой износостойчивостью, но меньшей прочностью, чем сплавы с более крупными, образовавшимися при спекании кристаллами WC.

В результате спекания сплав претерпевает линейную усадку, достигающую 17—25%, и превращается в плотное тело с весьма незначительной остаточной пористостью.

Для успешного спекания необходим некоторый минимальный объем жидкой фазы, который можно регулировать, увеличивая общее содержание цементирующей составляющей в шихте или повысяя температуру спекания. В последнем случае количество жидкой фазы увеличивается вследствие повышения растворимости карбида вольфрама в кобалте. Поэтому чем ниже содержание кобальта в сплаве, тем выше должна быть температура спекания.
Приведенное выше обсуждение механизма процесса спекания относилось к псевдобинарной системе WC—Co. Однако в случае изменения состава шихты или сплава в процессе спекания по содержанию углерода необходимо учитывать возможность выделения других фаз, кроме WC и твердого раствора на основе кобальта (γ-фаза) в системе W—Co—C.

На рис. 88 показана часть изотермического разреза системы при 1400°С. Двухфазная область WC + γ—узкая (ее ширина 0,1—0,15% С при содержании кобальта 10—15%) [52, 53]. Небольшое отклонение от бинарного разреза WC—Co вследствие разуглероживания сплава вызывает появление третьей фазы — двойного карбида W₆Co₃C (η-фаза), что ведет к повышенной хрупкости сплава. Отклонение состава сплава в сторону более высокого содержания углерода приводит к выделению графита, что уменьшает износостойчивость сплава. Пути стабилизации содержания

249
углерода в сплавах WC—Co детально рассмотрены в монографии М. М. Бабича [51].

Изложенное выше позволяет сформулировать задачи, выполняемые цементирующим металлом:

1) формирование сплава в процессе спекания путем образования жидкой фазы, состоящей из раствора WC в цементирующем металле;

2) обеспечение необходимых конечных свойств сплава (сочетание твердости с достаточной прочностью).

Первую задачу может выполнить любой металл группы железа, но конечные свойства сплава лучше всего обеспечивает кобальт.

Применение никеля вместо кобальта приводит к получению сплавов с пониженной прочностью и твердостью. Еще менее пригодно железо. В последнем случае цементирующая фаза представляет собой белый чугун, обусловливающий хрупкость сплава.

Исследования А. Н. Зеликмана, С. С. Лосевой и Краснощековой (1946 г.) [44] показали, что твердые растворы WC в кобальте склонны к упрочнению и отличаются значительной большей твердостью, чем твердые растворы на основе никеля. Это в дальнейшем было подтверждено И. Н. Чапоровой и Е. А. Щетилиной [53].

Улучшения свойств сплава WC—Ni можно достигнуть небольшой добавкой вольфрама к никелю (или, что то же самое, применением WC с некоторым недостатком углерода) [54]. Однако в этом случае создаются условия для выделения хрупкой т-фазы. Необходимость сохранения в процессе спекания определенного недостатка углерода в сплаве с одновременным предохранением от появления хрупкой т-фазы затрудняет производственный выпуск качественных сплавов WC—Ni.

Титанвольфрамовые твердые сплавы

Принципиальная технологическая схема производства твердых сплавов, в состав которых, кроме WC, входит TiC, не отличается от таковой для сплавов WC—Co. Особенности производства состоят здесь в приемах введения в шихту карбида титана.

При температуре 1500—1600° C (температура спекания) в TiC растворяется до 74% WC. Это обстоятельство позволяет наметить два пути введения карбидов в шихту для спекания:

а) перемешивание раздельно взятых карбидов WC и TiC;

б) применение предварительно приготовленного твердого раствора WC в TiC.

Вначале был наиболее распространен первый способ. Основную трудность представляло приготовление карбида титана требуемого стандартного качества [44]. В последние годы более широкое распространение получило введение карбида титана в шихту в виде насыщенного твердого раствора WC—TiC (сложный карбид).

Используют два варианта получения сложно карбида.
1. Смесь WC + TiO₂ + C прокаливают при температуре 2000—2300° С в атмосфере водорода. При этом TiO₂, взаимодействуя с углеродом, образует TiC, который в свою очередь тут же образует твердый раствор WC—TiC.

2. Смесь W + TiO₂ + C прокаливают при температуре 2000—2300° С в водороде.

Оба варианта при соблюдении оптимальных режимов дают продукты одинакового качества. Сложный карбид получают в графито-трубчатых печах при непрерывном продвижении через печь графитовых лодочек, наполненных плотно набитой шихтой. Полученные брикеты сложного карбида измельчают в шаровых мельницах.

Шихту составляют из расчета получения твердого раствора WC в TiC, содержащего 30% (по массе) TiC, что отвечает насыщенному раствору WC в TiC при температуре спекания сплавов (1500—1600° С).

Содержание связанного углерода в сложном карбиде обычно ниже теоретического. Продукт карбидизации содержит некоторое количество свободного углерода, примеси кислорода (0,2—0,4%) и азота (до 0,15%). Как показано в работе [55], присутствие азота в сложном карбиде не влияет на качество получаемых сплавов, поскольку при спекании азот не выделяется и остается в составе сложного карбида. Однако примесь кислорода может неблагоприятно влиять на спекание вследствие выделения CO, что может привести к повышенной пористости сплава.

При приготовлении твердосплавных смесей в шихту вводят сложный карбид WC—TiC, карбид вольфрама (в зависимости от состава сплава) и кобальт. Размол смесей, процессы прессования и спекания проводят так же, как и для сплавов WC—Co.

Спекание титанвольфрамовых сплавов проводят при более высоких температурах (1500—1600° С), чем сплавов WC—Co, и обязательно в атмосфере водорода или в вакууме. Наличие в водороде примеси азота или подсасывание его через неплотности может вызвать азотирование сплава с выделением свободного углерода. Поэтому печи для спекания должны быть тщательно герметизированы. В угольно-трубчатых печах для устранения подсоса воздуха при выгрузке лодочек со сплавами из холодильника последний сообщается с печью специальным затвором, за-крываемым во время разгрузки. Такой же затвор устраивается и в загрузочной части печи.

СПИСОК ЛИТЕРАТУРЫ К ГЛ. I

251

СПИСОК ЛИТЕРАТУРЫ К ГЛ. II

1. Несмеянов Ан. Н., Лапицкий А. В., Руденко Н. П. Получение радиоактивных изотопов. М., ГХИ, 1954. 192 с. с ил.
2. Смиттрилс К. Дж. Вольфрам. Изд. 3-е. Пер. с англ. М., Металлургиздат, 1958. 414 с. с ил.
8. Орммонич Б. Ф. Структура неорганических веществ. М., Гостехтеоретиздат, 1950. 968 с. с ил.
15. Несмеянов А. Н. Давление пара химических элементов. М., Изд-во АН СССР, 1961. 393 с. с ил.
35. Францевич И. Н., Войтович Р. Ф., Лавренко В. А. Высокотемпературное окисление металлов и сплавов. Киев, Гостехиздат УССР, 1963. 323 с. с ил.
40. Коррозия металлов. Кн. 1. Пер. с англ. М., Госхимиздат, 1952. 380 с. с ил.
41. Артынбаев Т., Ганиев Ш. У. Растворение молибдена и вольфрама в перекиси водорода. Информационное сообщение № 56. Ташкент, изд. АН УзССР, 1971.
47. «American Metal Market», 1972, 1 February, p. 2A.
54. Кристаллизация тугоплавких металлов из газовой фазы. М., Атомиздат, 1974. 262 с. с ил. Авт.: В. Е. Иванов, Е. П. Нечипоренко, В. М. Криворучко, В. В. Сагалович.
1. Зеликман А. Н. Металлургия вольфрама и молибдена. М., Металлургиздат, 1949. 246 с. с ил.
4. Мейрсон Г. А., Зеликман А. Н. Металлургия редких металлов. М., Металлургиздат, 1955. 608 с. с ил.
5. Абашин Г. И., Позозян Г. М. Технология получения вольфрама и молибдена. М., Металлургиздат, 1960. 259 с. с ил.
16. Башилов И. Я. Введение в технологию редких элементов. М., ОНТИ, 1932. 275 с. с ил.
17. Масленников И. Н. — «Цветные металлы», 1939, № 4—5, с. 140—143 с ил.
25. «Engineering and Mining Journ.», 1959, № 10, р. 83.
34. Беликов В. В., Масленщиков И. Н., Михайловна И. А. и др. — «Цветные металлы», 1968, № 10, с. 85—87 с ил.
36. Хауски Н. Н., Смирнов Ю. Р., Бермаков А. А. и др. Современное состояние использования ультразвука в процессах обогащения и гидрометаллургии цветных металлов. М., «Цветметинформация» 1971. 29 с. с ил.
41. Зеликман А. Н., Агноков Т. Ш., Ракова Н. Н., Федоров Ю. П. — В кн.: Экстракция и сорбция в металлургии молибдела, вольфрама и рения. М., «Цветметинформация», 1971, с. 58—64 с ил.
42. Ракова Н. Н. — «Цветные металлы», 1975, № 12, с. 18—22 с ил.
43. Зеликман А. Н., Агноков Т. Ш., Ракова Н. Н. — «Гидрометаллургические и хлорные процессы в производстве редких металлов». М., «Металлургия», 1972 (Научн. труды МИСиС. Сб. № 75), с. 8—14 с ил.
46. Зеликман А. Н., Ракова Н. Н. — «Гидрометаллургические и хлорные процессы в производстве редких металлов». М., «Металлургия», 1972 (Научн. труды МИСиС. Сб. № 75), с. 3—7 с ил.
47. Зеликман А. Н., Ракова Н. Н., Корнеева С. Г. — «Цветные металлы», 1975, № 9, c. 47—49 с ил.
49. Иванова Г. Ф. Геохимические условия образования вольфрамовых месторождений. М., «Наука», 1972, 150 с. с ил.
50. Назаренко В. А., Полуцкинов Е. Н. — ЖНХ, 1969, т. 14, № 1, с. 204—211 с ил.
51. Урусова М. А., Влашко В. М., Ракова Н. Н., Зеликман А. Н. — ЖНХ, 1975, № 8, c. 2239—2242 с ил.
52. Ящуковский К. Б., Питер К. Е. — ЖНХ, 1964, т. 9, № 8, с. 1838—1843 с ил.
53. Ящуковский К. Б., Романов В. Ф. — ЖНХ, 1964, т. 9, № 7, с. 1578—1583 с ил.
54. Рузинов Л. П., Гуляевский В. И. — ЖНХ, 1964, т. 9, № 7, с. 1578—1583 с ил.
55. Иванова Г. Ф., Ходаковский И. И. — «Геохимия», 1968, № 8, с. 930—940 с ил.
57. Урусов Б. С., Иванова Г. Ф., Ходаковский И. И. — «Геохимия», 1967, № 10, с. 1050—1063 с ил.
58. Богомильская Е. П., Матусевич Ш. И. — «Редкие металлы», 1937, № 5—6, с. 40—42 с ил.
60. Ракова Н. Н. — «Цветные металлы», 1975, № 12, с. 47—49 с ил.
61. Гуляевская И. И. — «Цветные металлы», 1969, № 8, с. 63—65 с ил.
64. Булгачют Ю. А., Давидович Р. Л. — ЖНХ, 1965, т. 10, № 8, с. 1862—1871 с ил.

255
66. Харьковский И. А. — В кн.: Химия и технология молибдена и вольфрама. Нальчик, изд. Кабардино-Балкарского университета, 1971, с. 71—78 с ил.
68. Карякин Ю. В., Крячко Э. Н. — ЖХН, 1967, т. 12, № 10, с. 2567—2578 с ил.
69. Бокий Г. Б., Анкин И. И. — ЖХН, 1956, т. 1, № 8, с. 1926—1928 с ил.
70. Никитина Е. А. Гетерополисоединения. М., Госхимиздат, 1962, 422 с. с ил.
72. Зеликман А. И., Вольдман Г. М., Калинина Н. Г., Горбань Е. Е. — В кн.: Экстракция и сорбция в металлургии молибдена, вольфрама и рения. М., «Цветметинформация», 1971, с. 78—87 с ил.
73. Зеликман А. И., Вольдман Г. М., Ракова Н. Н., Стенюшкина Т. П. — «Цветные металлы», 1972, № 3, с. 38—41 с ил.
75. Нерезов В. М., Меркулова В. И. — В кн.: Материалы II Всесоюзного совещания по химии и технологии молибдена и вольфрама. Нальчик, изд. Кабардино-Балкарского университета, 1974, с. 203—208.
76. Палант А. А., Резниченко В. А., Панфилова Л. Т. — ЖХН, 1947, т. 19, с. 2415—2420 с ил.
79. Вольдман Г. М., Зеликман А. И., Зиберов Г. Н., Казерманян В. С., Хутюрацкая И. И. — ДАН СССР, 1977, т. 232, № 3, с. 38—42 с ил.
80. Масленщиков Н. Н., Петров М. А., Попрукайло В. М. — В кн.: Экстракция и сорбция в металлургии вольфрама, молибдена и рения. М., «Цветметинформация», 1971, с. 25—36 с ил.
82. Петров М. А., Масленщиков Н. Н., Давыдова А. Д. — «Обогащение руд», 1974, № 1, с. 13—15 с ил.
83. Вольдман Г. М., Зеликман А. И., Зиберов Г. Н., Пузанов Д. С. — ЖХН, 1976 (в печати).
88. «Engineering and Mining Journ.», 1970, № 7, р. 81—86; № 8, р. 158—162.
90. Шапиро К. Я. — «Бюл. ЦИИН ЦМ», 1961, № 6, с. 41—44 с ил.
91. Шапиро К. Я., Глебов Ю. М., Тараканов Б. М. — «Цветные металлы», 1963, № 1, с. 54—57 с ил.
93. Николова М., Кирич А., Бойчев А., Цонева Л. — «Рудодобив и Металлургия» (Болгария), 1970, № 6, с. 50—55.

256
98. Мерсон Г. А., Павлюк Ф. А. — ЖХХ, 1957, № 2, с. 1377—1381 с ил.
100. Никитина И. С., Веллер Р. Л. — «Обогащение и металлургия цветных металлов». М., Металлургиздат, 1957 (Труды Гипрметма. Сб. № 13), с. 129—133 с ил.
103. Масленников Н. Н., Петров М. А., Попрукайло В. М. — В кн.: Экстракция и сорбция в металлургии молибдена, вольфрама и рения. М., «Цветметинформация», 1971, с. 25—36 с ил.
105. Паскевич Б. Н., Кузнецов В. А., Егоров И. Ф. — В кн.: Экстракция и сорбция в металлургии молибдена, вольфрама и рения. М., «Цветметинформация», 1971, с. 118—123 с ил.
106. Шапиро К. Я., Вольк-Карачевская И. В., Кулакова В. В. — «Цветные металлы», 1967, № 6, с. 67—71 с ил.
107. Кулакова В. В., Вольк-Карачевская И. В., Шапиро К. Я. и др. — В кн.: Экстракция и сорбция в металлургии молибдена, вольфрама и рения. М., «Цветметинформация», 1971, с. 48—58 с ил.
110. Холмогоров А. Г., Тыняная Г. Г., Кеврух А. П. — «Цветные металлы», 1973, № 5, с. 56—60 с ил.
111. Зеликман А. Н., Вольман Г. М., Казерманьян В. С. — ЖХХ, 1972, т. 17, с. 783—787 с ил.
112. Зеликман А. Н., Калинина И. Г. — Тугоплавкие металлы. М., «Металлургия», 1968 (Научн. труды МИСиС. Сб. № 45), с. 26—35 с ил.
114. Зеликман А. Н., Калинина И. Г. — «Цветная металлургия» (Бюл. ин-та «Цветметинформация»), 1966, № 16, с. 52—56 с ил.
115. Зеликман А. Н., Калинина И. Г., Смольникова Р. И. — ЖХХ, 1968, № 10, с. 2778—2782 с ил.
120. Юркевич Ю. Н., Свиридовская Р. М. — «Цветные металлы», 1964, № 8, с. 71—75 с ил.
121. Юркевич Ю. Н., Шапиро К. Я., Свиридовская Р. М. — ЖПХ, 1962, т. 37, № 10, с. 112—113 с ил.
123. Иванов И. М., Золотарева Л. С., Юдевич Н. В., Гиндин Л. М. — «Изв. Сибирского отд. АН СССР. Сер. химических наук», 1972, вып. 3, № 7, с. 80—95 с ил.

141. Зеликман А. Н., Крейн О. Е., Шулявко Г. А. — «Цветные металлы», 1972, № 7, с. 63—65 с ил.

143. Калашихин А. Н., Резняков А. А., Колчева В. Я., Миркин Л. А. — «Цветные металлы», 1975, № 6, с. 76—77 с ил.

144. Кипарисов С. С., Мерсон Г. А., Панов В. С. и др. — В кн.: Порошковая металлургия. Рига, изд. Латв. ИНТИ, 1975, с. 272—274.

145. Зеликман А. Н., Гимельфарб Ф. А. — «Тугоплавкие металлы». М., «Металлургия», 1968 (Научн. труды МИСиС. Сб. № XLV), с. 8—18 с ил.

146. Полкисин С. И., Глебов Ю. М. — «Цветные металлы», 1966, № 4, с. 27—28 с ил.

147. Малахов Д. А. — «Биол. ЦИИН ЦМ», 1959, № 15 (140), с. 35—36 с ил.

149. Зеликман А. Н., Гимельфарб Ф. А. Авт. свид. № 179930. — «Изобр., пром. образцы, тов. знаки», 1966, № 6, с. 76.

150. Зеликман А. Н., Гимельфарб Ф. А. Авт. свид. № 179931. — «Изобр., пром. образцы, тов. знаки», 1966, № 6, с. 76.

151. Зеликман А. Н., Гимельфарб Ф. А. — «Цветная металлургия» (Биол. ин-та «Цветметинформации»), 1966, № 6 (299), с. 27—30 с ил.

154. Флакс С. М., Ковалева И. Б., Казюта В. И. — «Цветная металлургия» (Бюл. ин-та «Цветметинформация», 1975, № 12, с. 42—44 с ил.

СПИСОК ЛИТЕРАТУРЫ К ГЛ. IV

1. Василькова И. В., Зайцева Н. Д., Шапкин П. С. — ЖНХ, 1963, т. 8, с. 1237—1239.
3. Щукарев С. А., Новиков Г. Н. — ЖНХ, 1956, т. 1, с. 357—361 с ил.
5. Щукарев С. А., Новиков Г. Н., Василькова И. В. — ЖНХ, 1960, т. 5, с. 802—807 с ил.
12. Щукарев С. А., Новиков Г. И., Ковалев Г. А. — ЖНХ, 1959, т. 4, с. 2185—2187 с ил.
31. Коршунов Б. Г., Голден В. И. — ЖНХ, 1961, т. 6, c. 840—841 с ил.
32. Зеликман А. Н., Крейн О. Е., Нисельсон Л. А., Иванова З. И. — ЖПХ, 1962, т. 35, № 7, c. 1467—1472, с ил.
33. Василькова И. В., Зайцева Н. Д., Шапкин П. С. — ЖХХ, 1963, т. 8, с. 2630—2631 с ил.
34. Шукарев С. А., Новиков Г. И., Суворов А. В., Баев А. К. — ЖХХ, 1958, т. 3, с. 2630—2632 с ил.
37. Зеликман А. Н., Степанюк С. Л., Хазан А. З., Иванов М. Я. — Гидрометаллургические и хлорные процессы в производстве редких металлов. М., «Металлургия», 1972 (Науч. труды МИСиС. Сб. № 75), с. 60—66 с ил.
40. Зеликман А. Н., Крейн О. Е., Никельсон Л. А., Иванова З. И. — ЖПХ, 1962, т. 35, № 7, с. 1467—1472 с ил.
41. Никельсон Л. А., Николаев Р. К. — «Изв. AN CCCP. Металлы», 1969, № 4, с. 73—75 с ил.
51. Командин А. В., Тарасенков Д. Н. — ЖОХ, 1940, т. 10, с. 1333—1336 с ил.
52. Зеликман А. Н., Дмитриев Ю. М., Хазан А. З. — «Изв. AN CCCP. Неорганические материалы», 1965, т. 1, № 9, с. 1582—1587 с ил.
54. Шукарев С. А., Суворов А. В. — ЖХХ, 1961, т. 6; № 6, с. 763—765 с ил.
60. Шукарев С. А., Новиков Г. Н., Суворов А. В., Максимов В. К. — ЖХХ, 1959, т. 4, с. 935—937 с ил.
63. Черепнев А. А. Проблемы хлорирования в области редких и рассеянных элементов. М., Металлургиздат, 1940. 104 с.
66. Паляев Ю. А. — «Производство и обработка сталей и сплавов». М., Металлургиздат, 1960 (Научн. труды МИСиС. Сб. № 39), с. 16—23 с ил.
71. Черепнев А. А. Проблемы хлорирования в области редких и рассеянных элементов. М., Металлургиздат, 1940. 104 с. с ил.
72. Фридман Д. Д., Богораз Ю. — ЖПХ, 1946, т. 29, № 8, с. 833—840 с ил.
73. Покорный Е. А. — В кн.: Извлечение и очистка редких металлов. Пер. с англ. М., Атомиздат, 1960, с. 45—60 с ил.
75. Кричевская О. Д., Кривин В. В., Зеликман Л. А. — «Научные труды» (Гипрорудникель). Вып. 42. Л., изд. ГлавгипроНИИпроекта, 1969, с. 35—42 с ил.
77. Зеликман А. Н., Стефанюк С. Л., Месяров И., Федоренко А. В. — Гидрометаллургические и хлорные процессы в производстве редких металлов. М., «Металлургия», 1972 (Труды МИСиС. Сб. № 75), с. 71—76 с ил.
84. Николаев Н. С., Буслаев Ю. А., Опаловский А. А. — ЖХХ, 1958, т. 3, с. 1731—1733 с ил.
86. Кошечко Л. Г., Павлов Э. Г., Громов Б. В. и др. — ЖХХ, 1971, т. 45, № 7, с. 1874—1875 с ил.
91. Шукарев А. С., Новиков Г. И., Суворов А. В., Максимов В. К. — ЖХХ, 1959, т. 4, № 9, с. 2063—2066 с ил.
95. Николаев Н. С., Власов С. В., Буслаев Ю. А., Опаловский А. А. — «Изв. Сибирск. отделения АН СССР», 1960, № 10, с. 47.
11. Берез И. И., Севастьянова Н. Г., Путялова Л. К. — ЖХХ, 1956, т. 1, № 8, с. 1713—1716 с ил.
26. Васильева И. И., Герасимов Я. И., Симанов Ю. П. — ЖФХ, 1960, т. 34, № 8, с. 1811—1815 с ил.
38. Казенас Е. К., Цветков Ю. В. — ЖФХ, 1967, № 12, с. 3112—3118 с ил.
52. Герасимов Я. И., Крествников А. Н., Шахов А. С. Химическая термодинамика в цветной металлурии. Т. III. Металлургиздат, 1963. 281 с. с ил.
53. Васильева И. А., Герасимов Я. И., Симанов Ю. П. — ЖФХ, 1960, т. 34, № 8, с. 1811–1814 с ил.
66. Тугарев Н. С., Замесов Г. З., Амосов В. М. — В кн.: Получение, свойства и применение тонких металлических порошков. Киев, Наукова думка, 1971, с. 41–51 с ил.
70. Джонс В. Д. Производство металлических порошков. М., «Мир», 1964. 224 с. с ил.
80. Абашин Г. Н., Погосян Г. М. Технология получения вольфрама и молибдена. М., Металлургиздат, 1960. 256 с. с ил.
83. Кожин О. П. — В кн.: Механизм и кинетика восстановления окислов. М., «Наука», 1968, с. 3—10 с ил.
86. Зеликман А. Н., Беляевская Л. В., Бобылев В. М. — «Изв. АН СССР, Неорганические материалы», 1968, № 12, с. 2204—2212 с ил.
94. Зеликман А. Н., Аникиев А. И. — «Гидрометаллургические и хлорные процессы в производстве редких металлов». М., «Металлургия», 1972 (Научн. труды МИСиС. Сб. № 75), с. 90—98 с ил.
98. Кристаллизация тугоплавких металлов из газовой фазы. М., Атомиздат, 1974. 262 с. с ил. Авт.: Б. Е. Иванов, Е. П. Нечипоренко, Б. М. Криворучко, В. В. Сагалович.
100. Раков Э. Г., Велешко Н. А. — «Атомная техника за рубежом». 1974, № 1, с. 18—33.
103. Уилкисон V. Получение тугоплавких металлов. Пер. с англ. М., Атомиздат, 1975. 335 с. с ил.
123. Карелин Б. А., Лукад, В. К. Методы и аппаратура для измерения размеров частиц. М., «Цветметинформация», 1966. 93 с. с ил.
126. Ходаков Г. С. Основы методов дисперсионного анализа порошков. М., Стройиздат, 1968. 199 с. с ил.
130. Беркман А. С., Мельникова И. Г. Пористая проницаемая керамика. М., Стройиздат, 1969. 142 с. с ил.
133. Анисимов К. Н., Несмеянов А. Н. — ДАН СССР, 1940, т. 26, № 1, с. 57—58 с ил.
134. Кончков К. А., Несмеянов А. Н., Надь М. М. и др. — ДАН СССР, 1940, т. 26, № 1, с. 53—56 с ил.
135. Несмеянов А. Н., Анисимов К. Н., Михеев Е. П. и др. — ЖНХ, 1959, т. 4, № 2, с. 249—252.
136. Белозерский Н. А., Кричевская О. Д. — Научные труды (Гипроникель) Вып. 3. Л., изд. ГлавметНИИпроекта, 1958, с. 284—298 с ил.
139. Кричевская О. Д., Белозерский Н. А., Сегаль Л. Д. и др. — ЖНХ, 1963, т. 8, № 8, с. 1806—1809 с ил.
143. Скларенко С. И., Дружинина О. С. — ЖПХ, 1949, т. 13, № 9, с. 1326.
144. Вацрамян А. Т., Красовский А. И., Петрова Ю. С., Соловьев З. А. — ЖФХ, 1960, т. 34, № 6, с. 1259—1259 с ил.
147. Баранский А. Н., Философова А. Б. — «Труды ин-та электрохимии УФАН СССР», М., Изд-во АН СССР, 1970 (Ин-т электрохимии УФАН СССР. Вып. 15), с. 69—73 с ил.
158. Сукич А. Б., Румянцева Г. В., Демичев А. Р., Жукова Н. В. — «Порошковая металлургия», 1971, № 12 (108), с. 1—5 с ил.
163. Королев Ю. М., Соловьев В. Ф., Столяров В. И. и др. — «Получение и свойства фторидного вольфрама». М., Атомиздат, 1975 (Труды МИФИ. Вып. 11), с. 15—23 с ил.

СПИСОК ЛИТЕРАТУРЫ К ГЛ. VI

5. Федорченко И. М., Андреевский Р. А. Основы порошковой металлургии. Киев, Изд-во АН УССР, 1961. 420 с. с ил.
13. Абашев Г. И., Погосян Г. М. Технология получения вольфрама и молибдена. М., Металлургиздат, 1960. 256 с. с ил.
18. Котляр А. А., Шпаро Н. Б., Ямпольский А. М. и др. — «Электротехническая техника», 1967, вып. 43, с. 73—76 с ил.
22. Дьяков В. В., Львович Б. П., Маркова В. В., Савинина П. Г. — «Порошковая металлургия». М., «Металлургия», 1965 (Труды ЦНИИЧМ. Сб. № 43), с. 32—42 с ил.
27. Уилксон У. Получение тугоплавких металлов. Пер. с англ. М., Атомиздат, 1975. 335 с. с ил.
34. Яковлев В. И. — В кн.: Технология получения новых материалов. Изд. ин-та материаловедения АН УССР, Киев, 1972, с. 134—140 с ил.
42. «Fachberichte für Oberflächentechnik» (Coburg), 1975, Bd 13, № 4, S. 244.
43. «Metallurgia and Metal Forming», 1975, v. 42, № 4, p. 119—120.
44. Карпинск Д. М., Крачченко А. А., Письмо вский Ю. Л. и др. — «Порошковая металлургия», 1970, № 10, с. 61—65 с ил.
48. Карпинск Д. М., Крачченко А. А., Полковский Ю. Л. — «Порошковая металлургия», 1971, № 5, с. 27—31 с ил.
60. Горшов В. Л., Постнов Л. Н. — В кн.: Вакуумная металлургия, Л., изд. ЛДНП, 1964, вып. 2, с. 33—40 с ил.
72. Ивановский Г. Ф., Засорская Т. Н. — «Изв. АН СССР. Металлы», 1965, № 3, с. 65—68 с ил.
Список литературы к гл. VII

5. Золотаревский В. С. Структура и свойства тугоплавких металлов и сплавов. Курс лекций. М., изд. МИССС. 1975. 83 с. с ил.
12. Парусников В. Н., Коростелев В. С., Хаскович Л. Л., Претель Э. — Электровакуумная техника, 1964, вып. 35, с. 3—8 с ил.
15. Уиллинсон У. Получение тугоплавких металлов. М., Атомиздат, 1975. 335 с.
17. Берсенев Б. И., Булычев Б. К. — «Физика металлов и металлорежущие», 1962, т. 13, № 6, с. 11—17 с ил.
СПИСОК ЛИТЕРАТУРЫ К ГЛ. VIII

4. Защита волнфрама от окисления при высоких температурах. М., Атомиздат, 1968. 158 с. с ил. Авт.: В. Е. Иванов, Е. П. Нечипоренко, Л. Н. Ефименко, М. И. Юрченко.
Привет, мир!

Как дела? Я здесь, чтобы помочь вам.

Какой вопрос у вас есть сегодня?
32. Макаров Р. В., Тедорович Д. К., Францевич И. Н. — «Порошковая металлургия», 1965, № 8, с. 62—70 с ил.
40. Уманский Я. С. Карбиды твердых сплавов. М., Металлургиздат, 1947. 132 с.
41. Кишфер Р., Шварцкопф П. Твердые сплавы. Пер. с нем. М., Металлургиздат, 1957. 664 с. с ил.
42. Туманов В. И. Свойства сплавов системы WC—Co. М., «Металлургия», 1971. 95 с. с ил.
44. Третьяков В. И. Основы металлургии и технологии производства спеченных твердых сплавов. М., «Металлургия», 1976. 527 с. с ил.
46. Крейцер Г. С., Эффрос Л. Д., Воронкова Е. А. — ЖТФ, 1952, т. 22, № 5, с. 858—862 с ил.
54. Метерсон Г. А., Корольков А. М., Бабич М. М., Невская Л. П. — «Редкие металлы», 1936, № 5, с. 38—41 с ил.